Customer-obsessed science


Research areas
-
July 31, 2025Using ensembles of agents to generate and refine interactions annotated with chains of thought improves performance on a battery of benchmarks by an average of 29%.
Featured news
-
CIKM 20252025To give customers good experience, an e-commerce retailer needs high-quality product information in its catalog. Yet, the raw product information often lacks sufficient quality. For a large catalog that can contain billions of products, manually fixing this information is highly labor-intensive. To address this issue, we propose using the tool use functionality of large language models to automatically
-
RecSys 20252025We study offline evaluation of two-stage recommender systems, focusing on the first stage, candidate generation. Traditionally, candidate generators have been evaluated in terms of standard information retrieval metrics, using curated or heuristically labeled data, which does not always reflect their true impact to user experience or business metrics. We instead take a holistic view, measuring their effectiveness
-
2025The increasing complexity and fragmentation of financial systems in large organizations have created significant challenges for financial teams, particularly in performing real-time, end-to-end validation, as existing validation methods relying on static rules or batch processing are often inadequate for today's dynamic financial environments. This paper introduces a novel approach using Large Language
-
We present an autonomous framework that leverages Large Language Models (LLMs) to automate end-to-end business analysis and market report generation. At its core, the system employs specialized agents - Researcher, Reviewer, Writer, and Retriever - that collaborate to analyze data and produce comprehensive reports. These agents learn from real professional consultants' presentation materials at Amazon through
-
IROS 20252025We present and tackle the problem of Embodied Question Answering (EQA) with Situational Queries (S-EQA) in a household environment. Unlike prior EQA work tackling simple queries that directly reference target objects and properties ('What is the color of the car?'), situational queries (such as 'Is the house ready for sleeptime?') are challenging as they require the agent to correctly identify multiple
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all