Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
January 8, 20264 min read
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 10, 20255 min read
Featured news
-
RecSys 2025 Workshop on Music Recommender Systems2025Personalization is a key requirement for most customer experiences in a music streaming service, such as landing page, station song sequencing, or search. A common approach is to develop dedicated personalization ML models, one for each experience, that directly integrate with all the personalization signals alongside experience-specific signals. However, this is not scalable as it is costly for each product
-
2025With the increasing size of datasets used for training neural networks, data pruning has gained traction in recent years. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when
-
2025In this work, we introduce long-video masked-embedding autoencoders (LV-MAE), a self-supervised learning framework for long video representation. Our approach treats short- and long-span dependencies as two separate tasks. Such decoupling allows for a more intuitive video processing where short-span spatiotemporal primitives are first encoded and are then used to capture long-range dependencies across consecutive
-
2025Large Language Models (LLMs) often suffer from mode collapse, repeatedly generating the same few completions even when many valid answers exist, limiting their diversity across a wide range of tasks. We introduce Group-Aware Policy Optimization (GAPO), a simple extension of the recent and popular Group Relative Policy Optimization (GRPO) that computes rewards over the group as a whole. GAPO enables learning
-
2025Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we pro-pose FiSCo (Fine-grained Semantic Comparison), a novel statistical frame-work to evaluate group-level fairness in LLMs
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all