Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
January 8, 20264 min read
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 10, 20255 min read
Featured news
-
2026Reinforcement learning (RL) has re-emerged as a natural approach for training interactive LLM agents in real-world environments. However, directly applying the widely used Group Relative Policy Optimization (GRPO) algorithm to multi-turn tasks exposes notable limitations, particularly in scenarios requiring long-horizon reasoning. To address these challenges, we investigate more stable and effective advantage
-
2026Diffusion language models (DLMs) have recently emerged as a compelling alternative to autoregressive generation, offering parallel generation and improved global coherence. During inference, DLMs generate text by iteratively denoising masked sequences in parallel; however, determining which positions to unmask and which tokens to commit forms a large combinatorial search problem. Existing inference methods
-
ICLR 20262026Reasoning about failures is crucial for building reliable and trustworthy robotic systems. Prior approaches either treat failure reasoning as a closed-set classification problem or assume access to ample human annotations. Failures in the real world are typically subtle, combinatorial, and difficult to enumerate, whereas rich reasoning labels are expensive to acquire. We address this problem by introducing
-
EACL 2026 Industry Track2026This paper introduces a novel framework for simulating and analyzing how uncooperative behaviors can destabilize or collapse LLM-based multi-agent systems. Our framework includes two key components: (1) a game theory-based taxonomy of uncooperative agent behaviors, addressing a notable gap in the existing literature; and (2) a structured, multistage simulation pipeline that dynamically generates and refines
-
2026Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all