The National Science Foundation logo is seen on an exterior brick wall at NSF headquarters
The U.S. National Science Foundation and Amazon have announced the recipients of 13 selected projects from the program's most recent call for submissions. The awardees have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.
JHVEPhoto — stock.adobe.com

U.S. National Science Foundation, in collaboration with Amazon, announces latest Fairness in AI grant projects

Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

  1. In 2019, the U.S. National Science Foundation (NSF) and Amazon announced a collaboration — the Fairness in AI program — to strengthen and support fairness in artificial intelligence and machine learning.

    To date, in two rounds of proposal submissions, NSF has awarded 21 research grants in areas such as ensuring fairness in AI algorithms and the systems that incorporate them, using AI to promote equity in society, and developing principles for human interaction with AI-based systems.

    In June of 2021, Amazon and the NSF opened the third round of submissions with a focus on theoretical and algorithmic foundations; principles for human interaction with AI systems; technologies such as natural language understanding and computer vision; and applications including hiring decisions, education, criminal justice, and human services.

    Now Amazon and NSF are announcing the recipients of 13 selected projects from that latest call for submissions.

    The awardees, who collectively will receive up to $9.5 million in financial support, have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.

    “We are thrilled to share NSF’s selection of thirteen Fairness in AI proposals from talented researchers across the United States,” said Prem Natarajan, Alexa AI vice president of Natural Understanding. “The increasing prevalence of AI in our everyday lives calls for continued multi-sector investments into advancing their trustworthiness and robustness against bias. Amazon is proud to have partnered with the NSF for the past three years to support this critically important research area.”

    Amazon, which provides partial funding for the program, does not participate in the grant-selection process.

    “These awards are part of NSF's commitment to pursue scientific discoveries that enable us to achieve the full spectrum of artificial intelligence potential at the same time we address critical questions about their uses and impacts," said Wendy Nilsen, deputy division director for NSF's Information and Intelligent Systems Division.

    More information about the Fairness in AI program is available on NSF website, and via their program update. Below is the list of the 2022 awardees, and an overview of their projects.

  2. An interpretable AI framework for care of critically ill patients involving matching and decision trees

    “This project introduces a framework for interpretable, patient-centered causal inference and policy design for in-hospital patient care. This framework arose from a challenging problem, which is how to treat critically ill patients who are at risk for seizures (subclinical seizures) that can severely damage a patient's brain. In this high-stakes application of artificial intelligence, the data are complex, including noisy time-series, medical history, and demographic information. The goal is to produce interpretable causal estimates and policy decisions, allowing doctors to understand exactly how data were combined, permitting better troubleshooting, uncertainty quantification, and ultimately, trust. The core of the project's framework consists of novel and sophisticated matching techniques, which match each treated patient in the dataset with other (similar) patients who were not treated. Matching emulates a randomized controlled trial, allowing the effect of the treatment to be estimated for each patient, based on the outcomes from their matched group. A second important element of the framework involves interpretable policy design, where sparse decision trees will be used to identify interpretable subgroups of individuals who should receive similar treatments.”

    • Principal investigator: Cynthia Rudin
    • Co-principal investigators: Alexander Volfovsky, Sudeepa Roy
    • Organization: Duke University
    • Award amount: $625,000

    Project description

  3. Fair representation learning: fundamental trade-offs and algorithms

    “Artificial intelligence-based computer systems are increasingly reliant on effective information representation in order to support decision making in domains ranging from image recognition systems to identity control through face recognition. However, systems that rely on traditional statistics and prediction from historical or human-curated data also naturally inherit any past biased or discriminative tendencies. The overarching goal of the award is to mitigate this problem by using information representations that maintain its utility while eliminating information that could lead to discrimination against subgroups in a population. Specifically, this project will study the different trade-offs between utility and fairness of different data representations, and then identify solutions to reduce the gap to the best trade-off. Then, new representations and corresponding algorithms will be developed guided by such trade-off analysis. The investigators will provide performance limits based on the developed theory, and also evidence of efficacy in order to obtain fair machine learning systems and to gain societal trust. The application domain used in this research is face recognition systems. The undergraduate and graduate students who participate in the project will be trained to conduct cutting-edge research to integrate fairness into artificial intelligent based systems.”

    • Principal investigator: Vishnu Boddeti
    • Organization: Michigan State University
    • Award amount: $331,698

    Project description

  4. A new paradigm for the evaluation and training of inclusive automatic speech recognition

    “Automatic speech recognition can improve your productivity in small ways: rather than searching for a song, a product, or an address using a graphical user interface, it is often faster to accomplish these tasks using automatic speech recognition. For many groups of people, however, speech recognition works less well, possibly because of regional accents, or because of second-language accent, or because of a disability. This Fairness in AI project defines a new way of thinking about speech technology. In this new way of thinking, an automatic speech recognizer is not considered to work well unless it works well for all users, including users with regional accents, second-language accents, and severe disabilities. There are three sub-projects. The first sub-project will create black-box testing standards that speech technology researchers can use to test their speech recognizers, in order to test how useful their speech recognizer will be for different groups of people. For example, if a researcher discovers that their product works well for some people, but not others, then the researcher will have the opportunity to gather more training data, and to perform more development, in order to make sure that the under-served community is better-served. The second sub-project will create glass-box testing standards that researchers can use to debug inclusivity problems. For example, if a speech recognizer has trouble with a particular dialect, then glass-box methods will identify particular speech sounds in that dialect that are confusing the recognizer, so that researchers can more effectively solve the problem. The third sub-project will create new methods for training a speech recognizer in order to guarantee that it works equally well for all of the different groups represented in available data. Data will come from podcasts and the Internet. Speakers will be identified as members of a particular group if and only if they declare themselves to be members of that group. All of the developed software will be distributed open-source.”

    • Principal investigator: Mark Hasegawa-Johnson
    • Co-principal investigators: Zsuzsanna Fagyal, Najim Dehak, Piotr Zelasko, Laureano Moro-Velazquez
    • Organization: University of Illinois at Urbana-Champaign
    • Award amount: $500,000

    Project description

  5. A normative economic approach to fairness in AI

    “A vast body of work in algorithmic fairness is devoted to preventing artificial intelligence (AI) from exacerbating societal biases. The predominant viewpoints in this literature equates fairness with lack of bias or seeks to achieve some form of statistical parity between demographic groups. By contrast, this project pursues alternative approaches rooted in normative economics, the field that evaluates policies and programs by asking "what should be". The work is driven by two observations. First, fairness to individuals and groups can be realized according to people’s preferences represented in the form of utility functions. Second, traditional notions of algorithmic fairness may be at odds with welfare (the overall utility of groups), including the welfare of those groups the fairness criteria intend to protect. The goal of this project is to establish normative economic approaches as a central tool in the study of fairness in AI. Towards this end the team pursues two research questions. First, can the perspective of normative economics be reconciled with existing approaches to fairness in AI? Second, how can normative economics be drawn upon to rethink what fairness in AI should be? The project will integrate theoretical and algorithmic advances into real systems used to inform refugee resettlement decisions. The system will be examined from a fairness viewpoint, with the goal of ultimately ensuring fairness guarantees and welfare.”

    • Principal investigator: Yiling Chen
    • Co-principal investigator: Ariel Procaccia
    • Organization: Harvard University
    • Award amount: $560,345

    Project description

  6. Advancing optimization for threshold-agnostic fair AI systems

    “Artificial intelligence (AI) and machine learning technologies are being used in high-stakes decision-making systems like lending decision, employment screening, and criminal justice sentencing. A new challenge arising with these AI systems is avoiding the unfairness they might introduce and that can lead to discriminatory decisions for protected classes. Most AI systems use some kinds of thresholds to make decisions. This project aims to improve fairness-aware AI technologies by formulating threshold-agnostic metrics for decision making. In particular, the research team will improve the training procedures of fairness-constrained AI models to make the model adaptive to different contexts, applicable to different applications, and subject to emerging fairness constraints. The success of this project will yield a transferable approach to improve fairness in various aspects of society by eliminating the disparate impacts and enhancing the fairness of AI systems in the hands of the decision makers. Together with AI practitioners, the researchers will integrate the techniques in this project into real-world systems such as education analytics. This project will also contribute to training future professionals in AI and machine learning and broaden this activity by including training high school students and under-represented undergraduates.”

    • Principal investigator: Tianbao Yang
    • Co-principal investigators: Qihang Lin, Mingxuan Sun
    • Organization: University of Iowa
    • Award amount: $500,000

    Project description

  7. Toward fair decision making and resource allocation with application to AI-assisted graduate admission and degree completion

    “Machine learning systems have become prominent in many applications in everyday life, such as healthcare, finance, hiring, and education. These systems are intended to improve upon human decision-making by finding patterns in massive amounts of data, beyond what can be intuited by humans. However, it has been demonstrated that these systems learn and propagate similar biases present in human decision-making. This project aims to develop general theory and techniques on fairness in AI, with applications to improving retention and graduation rates of under-represented groups in STEM graduate programs. Recent research has shown that simply focusing on admission rates is not sufficient to improve graduation rates. This project is envisioned to go beyond designing "fair classifiers" such as fair graduate admission that satisfy a static fairness notion in a single moment in time, and designs AI systems that make decisions over a period of time with the goal of ensuring overall long-term fair outcomes at the completion of a process. The use of data-driven AI solutions can allow the detection of patterns missed by humans, to empower targeted intervention and fair resource allocation over the course of an extended period of time. The research from this project will contribute to reducing bias in the admissions process and improving completion rates in graduate programs as well as fair decision-making in general applications of machine learning.”

    • Principal investigator: Furong Huang
    • Co-principal investigators: Min Wu, Dana Dachman-Soled
    • Organization: University of Maryland, College Park
    • Award amount: $625,000

    Project description

  8. BRMI — bias reduction in medical information

    “This award, Bias Reduction In Medical Information (BRIMI), focuses on using artificial intelligence (AI) to detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society. BRIMI offers outsized promise for increased equity in health information, improving fairness in AI, medicine, and in the information ecosystem online (e.g., health websites and social media content). BRIMI's novel study of biases stands to greatly advance the understanding of the challenges that minority groups and individuals face when seeking health information. By including specific interventions for both patients and doctors and advancing the state-of-the-art in public health and fact checking organizations, BRIMI aims to inform public policy, increase the public's critical literacy, and improve the well-being of historically under-served patients. The award includes significant outreach efforts, which will engage minority communities directly in our scientific process; broad stakeholder engagement will ensure that the research approach to the groups studied is respectful, ethical, and patient-centered. The BRIMI team is composed of academics, non-profits, and industry partners, thus improving collaboration and partnerships across different sectors and multiple disciplines. The BRIMI project will lead to fundamental research advances in computer science, while integrating deep expertise in medical training, public health interventions, and fact checking. BRIMI is the first large scale computational study of biased health information of any kind. This award specifically focuses on bias reduction in the health domain; its foundational computer science advances and contributions may generalize to other domains, and it will likely pave the way for studying bias in other areas such as politics and finances.”

    • Principal investigator: Shiri Dori-Hacohen
    • Co-principal investigators: Sherry Pagoto, Scott Hale
    • Organization: University of Connecticut
    • Award amount: $392,994

    Project description

  9. A novel paradigm for fairness-aware deep learning models on data streams

    “Massive amounts of information are transferred constantly between different domains in the form of data streams. Social networks, blogs, online businesses, and sensors all generate immense data streams. Such data streams are received in patterns that change over time. While this data can be assigned to specific categories, objects and events, their distribution is not constant. These categories are subject to distribution shifts. These distribution shifts are often due to the changes in the underlying environmental, geographical, economic, and cultural contexts. For example, the risks levels in loan applications have been subject to distribution shifts during the COVID-19 pandemic. This is because loan risks are based on factors associated to the applicants, such as employment status and income. Such factors are usually relatively stable, but have changed rapidly due to the economic impact of the pandemic. As a result, existing loan recommendation systems need to be adapted to limited examples. This project will develop open software to help users evaluate online fairness-in algorithms, mitigate potential biases, and examine utility-fairness trade-offs. It will implement two real-world applications: online crime event recognition from video data and online purchase behavior prediction from click-stream data. To amplify the impact of this project in research and education, this project will leverage STEM programs for students with diverse backgrounds, gender and race/ethnicity. This project includes activities including seminars, workshops, short courses, and research projects for students.”

    • Principal investigator: Feng Chen
    • Co-principal investigators: Latifur Khan, Xintao Wu, Christan Grant
    • Organization: University of Texas at Dallas
    • Award amount: $392,993

    Project description

  10. A human-centered approach to developing accessible and reliable machine translation

    “This Fairness in AI project aims to develop technology to reliably enhance cross-lingual communication in high-stakes contexts, such as when a person needs to communicate with someone who does not speak their language to get health care advice or apply for a job. While machine translation technology is frequently used in these conditions, existing systems often make errors that can have severe consequences for a patient or a job applicant. Further, it is challenging for people to know when automatic translations might be wrong when they do not understand the source or target language for translation. This project addresses this issue by developing accessible and reliable machine translation for lay users. It will provide mechanisms to guide users to recognize and recover from translation errors, and help them make better decisions given imperfect translations. As a result, more people will be able to use machine translation reliably to communicate across language barriers, which can have far-reaching positive consequences on their lives."

    • Principal investigator: Marine Carpuat
    • Co-principal investigators: Niloufar Salehi, Ge Gao
    • Organization: University of Maryland, College Park
    • Award amount: $392,993

    Project description

  11. AI algorithms for fair auctions, pricing, and marketing

    “This project develops algorithms for making fair decisions in AI-mediated auctions, pricing, and marketing, thus advancing national prosperity and economic welfare. The deployment of AI systems in business settings has thrived due to direct access to consumer data, the capability to implement personalization, and the ability to run algorithms in real-time. For example, advertisements users see are personalized since advertisers are willing to bid more in ad display auctions to reach users with particular demographic features. Pricing decisions on ride-sharing platforms or interest rates on loans are customized to the consumer's characteristics in order to maximize profit. Marketing campaigns on social media platforms target users based on the ability to predict who they will be able to influence in their social network. Unfortunately, these applications exhibit discrimination. Discriminatory targeting in housing and job ad auctions, discriminatory pricing for loans and ride-hailing services, and disparate treatment of social network users by marketing campaigns to exclude certain protected groups have been exposed. This project will develop theoretical frameworks and AI algorithms that ensure consumers from protected groups are not harmfully discriminated against in these settings. The new algorithms will facilitate fair conduct of business in these applications. The project also supports conferences that bring together practitioners, policymakers, and academics to discuss the integration of fair AI algorithms into law and practice.”

    • Principal investigator: Adam Elmachtoub
    • Co-principal investigators: Shipra Agrawal, Rachel Cummings, Christian Kroer, Eric Balkanski
    • Organization: Columbia University
    • Award amount: $392,993

    Project description

  12. Using explainable AI to increase equity and transparency in the juvenile justice system’s use of risk scores

    “Throughout the United States, juvenile justice systems use juvenile risk and need-assessment (JRNA) scores to identify the likelihood a youth will commit another offense in the future. This risk assessment score is then used by juvenile justice practitioners to inform how to intervene with a youth to prevent reoffending (e.g., referring youth to a community-based program vs. placing a youth in a juvenile correctional center). Unfortunately, most risk assessment systems lack transparency and often the reasons why a youth received a particular score are unclear. Moreover, how these scores are used in the decision making process is sometimes not well understood by families and youth affected by such decisions. This possibility is problematic because it can hinder individuals’ buy-in to the intervention recommended by the risk assessment as well as mask potential bias in those scores (e.g., if youth of a particular race or gender have risk scores driven by a particular item on the assessment). To address this issue, project researchers will develop automated, computer-generated explanations for these risk scores aimed at explaining how these scores were produced. Investigators will then test whether these better-explained risk scores help youth and juvenile justice decision makers understand the risk score a youth is given. In addition, the team of researchers will investigate whether these risk scores are working equally well for different groups of youth (for example, equally well for boys and for girls) and identify any potential biases in how they are being used in an effort to understand how equitable the decision making process is for demographic groups based on race and gender. The project is embedded within the juvenile justice system and aims to evaluate how real stakeholders understand how the risk scores are generated and used within that system based on actual juvenile justice system data.”

    • Principal investigator: Trent Buskirk
    • Co-principal investigators: Kelly Murphy
    • Organization: Bowling Green State University
    • Award amount: $392,993

    Project description

  13. Breaking the tradeoff barrier in algorithmic fairness

    “In order to be robust and trustworthy, algorithmic systems need to usefully serve diverse populations of users. Standard machine learning methods can easily fail in this regard, e.g. by optimizing for majority populations represented within their training data at the expense of worse performance on minority populations. A large literature on "algorithmic fairness" has arisen to address this widespread problem. However, at a technical level, this literature has viewed various technical notions of "fairness" as constraints, and has therefore viewed "fair learning" through the lens of constrained optimization. Although this has been a productive viewpoint from the perspective of algorithm design, it has led to tradeoffs being centered as the central object of study in "fair machine learning". In the standard framing, adding new protected populations, or quantitatively strengthening fairness constraints, necessarily leads to decreased accuracy overall and within each group. This has the effect of pitting the interests of different stakeholders against one another, and making it difficult to build consensus around "fair machine learning" techniques. The over-arching goal of this project is to break through this "fairness/accuracy tradeoff" paradigm.”

    • Principal investigator: Aaron Roth
    • Co-principal investigator: Michael Kearns
    • Organization: University of Pennsylvania
    • Award amount: $392,992

    Project description

  14. Advancing deep learning towards spatial fairness

    “The goal of spatial fairness is to reduce biases that have significant linkage to the locations or geographical areas of data samples. Such biases, if left unattended, can cause or exacerbate unfair distribution of resources, social division, spatial disparity, and weaknesses in resilience or sustainability. Spatial fairness is urgently needed for the use of artificial intelligence in a large variety of real-world problems such as agricultural monitoring and disaster management. Agricultural products, including crop maps and acreage estimates, are used to inform important decisions such as the distribution of subsidies and providing farm insurance. Inaccuracies and inequities produced by spatial biases adversely affect these decisions. Similarly, effective and fair mapping of natural disasters such as floods or fires is critical to inform live-saving actions and quantify damages and risks to public infrastructures, which is related to insurance estimation. Machine learning, in particular deep learning, has been widely adopted for spatial datasets with promising results. However, straightforward applications of machine learning have found limited success in preserving spatial fairness due to the variation of data distribution, data quantity, and data quality. The goal of this project is to develop a new generation of learning frameworks to explicitly preserve spatial fairness. The results and code will be made freely available and integrated into existing geospatial software. The methods will also be tested for incorporation in existing real systems (crop and water monitoring).”

    • Principal investigator: Xiaowei Jia
    • Co-principal investigators: Sergii Skakun, Yiqun Xie
    • Organization: University of Pittsburgh
    • Award amount: $755,098

    Project description

Research areas

Related content

US, NY, New York
We are seeking a motivated and experienced Senior Applied Scientist with expertise in Machine Learning (ML), Artificial Intelligence (AI), Big Data, and Service Oriented Architecture. You should have a deep understanding of the digital advertising business and scaled marketing across communication channels. In this role, you will collaborate with a cross-functional team of talented scientists and engineers to innovate, iterate, and solve real-world marketing problems with cutting-edge AWS technologies. You will lead in-depth analyses of the key problems faced by Amazon Ads customers and the challenges faced by marketing teams in meeting customer needs at scale. To address these problems, you will build innovative large-scale ML/AI solutions such as bespoke omni-channel recommender systems, and specialized LLM-powered assistants for customers and marketers. You will independently drive research and prototyping to deliver functional proofs of concept (POCs), and then partner with engineers to inform the technology roadmap and deploy successful POCs as scalable batch and real-time applications in production. Key job responsibilities • Define and execute a research and development plan that enables data-driven marketing decisions and delivers inspiring customer experiences • Evaluate, evolve, and invent scientific techniques to effectively address customer needs and business problems • Establish and drive science prototyping best practices to ensure coherence and integrity of data feeding into production ML/AI solutions • Collaborate with colleagues across science and engineering disciplines for rapid prototyping at scale • Partner with engineering teams to solve complex technical problems, define system-level requirements, develop implementation plans, and guide the adaptation of techniques to meet production needs • Partner with product managers and stakeholders to define forward-looking product visions and prospective business use-cases • Drive and lead of culture of data-driven innovation within and outside across Amazon Ads Marketing organization • Influence organizational vision across Ads Marketing organization About the team The Marketing Decisions Science team provides AI/ML products to enable Amazon Ads Marketing to deliver relevant and compelling guidance, education, and inspiration to prospective and active advertisers across marketing channels. We own the product, technology, and deployment roadmap for AI/ML products across Amazon Ads Marketing. We analyze the needs, experiences, and behaviors of Amazon advertisers at petabytes scale, to deliver the right marketing communications to the right advertiser at the right time. Our products enable applications and synergies across Ads organization, spanning marketing, product, and sales use cases.
US, NY, New York
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. This position requires that the candidate selected be a US Citizen. Key job responsibilities As an Data Scientist, you will - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction A day in the life About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Device Economics is looking for a senior economist experienced in causal inference, machine learning, empirical industrial organization, and scaled systems to work on business problems to advance critical resource allocation and pricing decisions in the Amazon Devices org. Senior roles lead vision setting, methods innovation, and act as thought leaders to Devices finance and business executives. Output will be included in scaled systems to automate existing processes and to maximize business and customer objectives. Amazon Devices designs and builds Amazon first-party consumer electronics products to delight and engage customers. Amazon Devices represents a highly complex space with 100+ products across several product categories (e-readers [Kindle], tablets [Fire Tablets], smart speakers and audio assistants [Echo], wifi routers [eero], and video doorbells and cameras [Ring and Blink]), for sale both online and in offline retailers in several regions. The space becomes more complex with dynamic product offering with new product launches and new marketplace launches. The Device Economics team leads in analyzing these complex marketplace dynamics to enable science-driven decision making in the Devices org. Device Economics achieves this through scientific applications that provide deep understanding of customer preferences. Our team’s outputs inform product development decisions, investments in future product categories, and product pricing and promotion. We have achieved substantial impact on the Devices business, and will achieve more. Device Economics seeks an experienced economist adept in measuring customer preferences and behaviors with proven capacity to innovate, scale measurement, drive rigor, and mentor talent. The candidate will work with Amazon Devices science leadership to refine science roadmaps, models, and priorities for innovation and simplification, and advance adoption of insights to influence important resource allocation and prioritization decisions. Effective communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. On Prime Video, customers can find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies Road House, The Lord of the Rings: The Rings of Power, Fallout, Reacher, The Boys, and The Idea of You; licensed fan favorites Dawson’s Creek and IF; Prime member exclusive access to coverage of live sports including Thursday Night Football, WNBA, and NWSL, and acclaimed sports documentaries including Bye Bye Barry and Federer; and programming from partners such as Apple TV+, Max, Crunchyroll, and MGM+ via Prime Video add-on subscriptions, as well as more than 500 free ad-supported (FAST) Channels. Prime members in the U.S. can share a variety of benefits, including Prime Video, by using Amazon Household. Prime Video is one benefit among many that provides savings, convenience, and entertainment as part of the Prime membership. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles, including blockbusters such as Challengers and The Fall Guy, via the Prime Video Store, and can enjoy content such as Jury Duty and Bosch: Legacy free with ads on Freevee. Customers can also go behind the scenes of their favorite movies and series with exclusive X-Ray access. For more info visit www.amazon.com/primevideo. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a Research Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), natural language processing (NLP), multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s recommendation systems, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: • Lead cutting-edge research in computer vision and natural language processing, applying it to video-centric media challenges. • Develop scalable machine learning models to enhance media asset generation, content discovery, and personalization. • Collaborate closely with engineering teams to integrate your models into production systems at scale, ensuring optimal performance and reliability. • Actively participate in publishing your research in leading conferences and journals. • Lead a team of skilled research scientists, you will shape the research strategy, create forward-looking roadmaps, and effectively communicate progress and insights to senior leadership • Stay up-to-date with the latest advancements in AI and machine learning to drive future research initiatives.
IL, Haifa
AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Are you an inventive, curious, and driven Applied Scientist with a strong background in AI and Deep Learning? Join Amazon’s AWS Multimodal generative AI science team and be a catalyst for groundbreaking advancements in Computer Vision, Generative AI, and foundational models. As part of the AWS Multimodal generative AI science team, you’ll lead innovative research projects, develop state-of-the-art algorithms, and pioneer solutions that will directly impact millions of Amazon customers. Leveraging Amazon’s vast computing power, you’ll work alongside a supportive and diverse group of top-tier scientists and engineers, contributing to products that redefine the industry. Key job responsibilities * Lead research initiatives in Multimodal generative AI, pushing the boundaries of model efficiency, accuracy, and scalability. * Design, implement, and evaluate deep learning models in a production environment. * Collaborate with cross-functional teams to transfer research outcomes into scalable AWS services. * Publish in top-tier conferences and journals, keeping Amazon at the forefront of innovation. * Mentor and guide other scientists and engineers, fostering a culture of scientific curiosity and excellence. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture: Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
AU, NSW, Sydney
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
US, NY, New York
Interested in building something new? Join the Amazon Autos team on an exhilarating journey to redefine the vehicle shopping experience. This is an opportunity to be part of the ground floor team for one of Amazon's new business ventures. As a key member, you'll lead the science strategy and play a pivotal role in helping us achieve our mission. Our goal is to create innovative automotive discovery and shopping experiences on Amazon, providing customers with greater convenience and a wider selection. If you're enthusiastic about innovating and delivering exceptional shopping experiences to customers, thrive on new challenges, and excel at solving complex problems using top-notch ML models, LLM and GenAI techniques, then you're the perfect candidate for this role. Strong business acumen and interpersonal skills are a must, as you'll work closely with business owners to understand customer needs and design scalable solutions. Join us on this exhilarating journey and be part of redefining the vehicle shopping experience. Key job responsibilities As Senior Applied Scientist in Amazon Autos, you will: - Lead the roadmap and strategy for applying science to solve customer problems in the Amazon AutoStore domain. - Drive big picture innovations with clear roadmaps for intermediate delivery. - Determine which areas of research to invest in. - Effectively communicate complicated machine learnings concepts to multiple partners. - Identify when to leverage existing technology versus innovate a new technology. - Work closely with partners to identify problems from the customer's perspective. - Interface with business customers, gathering requirements and delivering science solutions. - Apply your skills in areas such as deep learning and reinforcement learning while building scalable solutions for business problems. - Produce and deliver models that help build best-in-class customer experiences and build systems that allow us to deploy these models to production with low latency and high throughput. - Utilize your Generative AI, time series and predictive modeling skills, and creative problem-solving skills to drive new projects from ideation to implementation. - Establish scalable, efficient, automated processes for large scale data analyses, model development, validation and implementation. We are looking for a Senior Applied Scientist who loves working with big data and is passionate about improving the customer shopping experience. A day in the life In this role, you will be part of a multidisciplinary team working on one of Amazon's newest business ventures. As a key member, you will collaborate closely with engineering, product, design, operations, and business development to bring innovative solutions to our customers. Your science expertise will be leveraged to research and deliver novel solutions to existing problems, explore emerging problem spaces, and create new knowledge. You will invent and apply state-of-the-art technologies, such as large language models, machine learning, natural language processing, and computer vision, to build next-generation solutions for Amazon. You'll publish papers, file patents, and work closely with engineers to bring your ideas to production. Additionally, you will mentor Applied Scientists and Software Development Engineers with an interest in machine learning. This is an opportunity to make a significant impact, working in partnership with teams across Amazon to create enormous benefits for our customers through cutting-edge products. About the team This is a critical role for a newly formed team with a vision to create innovative automotive discovery and shopping experiences on Amazon, providing customers better convenience and more selection. We’re collaborating with other experienced teams at Amazon to define the future of how customers research and shop for cars online.
US, WA, Seattle
Enterprise Engineering is seeking an exceptional Senior Applied Scientist to join our AppSense team, which is revolutionizing Software Asset Management at Amazon and beyond. As a key member of our applied science team, you will leverage cutting-edge machine learning, natural language processing, and data analytics techniques to solve complex challenges in software discovery, cost optimization, and intelligent decision-making. Your work will directly impact Amazon's ability to manage its vast software portfolio efficiently, driving significant cost savings and operational improvements. In this role, you will have the opportunity to invent and implement novel scientific approaches that address critical business problems at the product level. You will collaborate closely with product managers, engineers, and business stakeholders to translate scientific innovations into practical, scalable solutions that enhance AppSense's capabilities and deliver value to our customers. Key job responsibilities * Lead the design, implementation, and delivery of scientifically complex solutions for AppSense, focusing on areas such as automated software discovery, intelligent cost optimization, and predictive analytics * Develop and apply state-of-the-art machine learning models to improve software categorization, usage prediction, and anomaly detection * Create innovative natural language processing solutions for contract analysis, optimization, and automated report generation * Design and implement advanced recommendation systems for software stack optimization based on job roles and team compositions * Develop reinforcement learning algorithms for automated license management, including predictive maintenance to prevent unexpected expirations or overage charges * Develop AI-driven negotiation assistants and collaborative budgeting tools with ML-powered spend forecasting * Create sentiment analysis models to gauge software satisfaction from user feedback and support tickets About the team The AppSense team is at the forefront of transforming software asset management at Amazon. We're building a comprehensive platform that provides visibility, control, and optimization for Amazon's vast software portfolio. Our mission is to leverage cutting-edge technology to help businesses discover, manage, and optimize their software assets, driving significant cost savings and operational efficiencies. As part of the applied science team within AppSense, you'll work alongside talented scientists, engineers, and product managers who are passionate about solving complex problems at scale. We foster a culture of innovation, encouraging team members to push the boundaries of what's possible in software asset management. Your contributions will directly impact Amazon's bottom line and have the potential to shape the future of how organizations manage their software ecosystems.
US, WA, Seattle
** This position is open to all candidates in Palo Alto, CA, Seattle, WA, NYC and Arlington, VA ** Amazon Ads Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Machine Learning Applied Scientist who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine-learning systems. Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. We are looking for a talented Machine Learning Applied Scientist for our Amazon Ads Response Prediction team to grow the business. We are providing advanced real-time machine learning services to connect shoppers with right ads on all platforms and surfaces worldwide. Through the deep understanding of both shoppers and products, we help shoppers discover new products they love, be the most efficient way for advertisers to meet their customers, and helps Amazon continuously innovate on behalf of all customers. Key job responsibilities As a Machine Learning Applied Scientist, you will: * Conduct deep data analysis to derive insights to the business, and identify gaps and new opportunities * Develop scalable and effective machine-learning models and optimization strategies to solve business problems * Run regular A/B experiments, gather data, and perform statistical analysis * Work closely with software engineers to deliver end-to-end solutions into production * Improve the scalability, efficiency and automation of large-scale data analytics, model training, deployment and serving * Conduct research on new machine-learning modeling to optimize all aspects of Sponsored Products business About the team We are pioneers in applying advanced machine learning and generative AI algorithms in Sponsored Products business. We empower every customer with a customized discovery experiences from back-end optimization (such as customized response prediction models) to front-end CX innovation (such as widgets), to help shoppers feel understood and shop efficiently on and off Amazon.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.