The National Science Foundation logo is seen on an exterior brick wall at NSF headquarters
The U.S. National Science Foundation and Amazon have announced the recipients of 13 selected projects from the program's most recent call for submissions. The awardees have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.
JHVEPhoto — stock.adobe.com

U.S. National Science Foundation, in collaboration with Amazon, announces latest Fairness in AI grant projects

Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

  1. In 2019, the U.S. National Science Foundation (NSF) and Amazon announced a collaboration — the Fairness in AI program — to strengthen and support fairness in artificial intelligence and machine learning.

    To date, in two rounds of proposal submissions, NSF has awarded 21 research grants in areas such as ensuring fairness in AI algorithms and the systems that incorporate them, using AI to promote equity in society, and developing principles for human interaction with AI-based systems.

    In June of 2021, Amazon and the NSF opened the third round of submissions with a focus on theoretical and algorithmic foundations; principles for human interaction with AI systems; technologies such as natural language understanding and computer vision; and applications including hiring decisions, education, criminal justice, and human services.

    Now Amazon and NSF are announcing the recipients of 13 selected projects from that latest call for submissions.

    The awardees, who collectively will receive up to $9.5 million in financial support, have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.

    “We are thrilled to share NSF’s selection of thirteen Fairness in AI proposals from talented researchers across the United States,” said Prem Natarajan, Alexa AI vice president of Natural Understanding. “The increasing prevalence of AI in our everyday lives calls for continued multi-sector investments into advancing their trustworthiness and robustness against bias. Amazon is proud to have partnered with the NSF for the past three years to support this critically important research area.”

    Amazon, which provides partial funding for the program, does not participate in the grant-selection process.

    “These awards are part of NSF's commitment to pursue scientific discoveries that enable us to achieve the full spectrum of artificial intelligence potential at the same time we address critical questions about their uses and impacts," said Wendy Nilsen, deputy division director for NSF's Information and Intelligent Systems Division.

    More information about the Fairness in AI program is available on NSF website, and via their program update. Below is the list of the 2022 awardees, and an overview of their projects.

  2. An interpretable AI framework for care of critically ill patients involving matching and decision trees

    “This project introduces a framework for interpretable, patient-centered causal inference and policy design for in-hospital patient care. This framework arose from a challenging problem, which is how to treat critically ill patients who are at risk for seizures (subclinical seizures) that can severely damage a patient's brain. In this high-stakes application of artificial intelligence, the data are complex, including noisy time-series, medical history, and demographic information. The goal is to produce interpretable causal estimates and policy decisions, allowing doctors to understand exactly how data were combined, permitting better troubleshooting, uncertainty quantification, and ultimately, trust. The core of the project's framework consists of novel and sophisticated matching techniques, which match each treated patient in the dataset with other (similar) patients who were not treated. Matching emulates a randomized controlled trial, allowing the effect of the treatment to be estimated for each patient, based on the outcomes from their matched group. A second important element of the framework involves interpretable policy design, where sparse decision trees will be used to identify interpretable subgroups of individuals who should receive similar treatments.”

    • Principal investigator: Cynthia Rudin
    • Co-principal investigators: Alexander Volfovsky, Sudeepa Roy
    • Organization: Duke University
    • Award amount: $625,000

    Project description

  3. Fair representation learning: fundamental trade-offs and algorithms

    “Artificial intelligence-based computer systems are increasingly reliant on effective information representation in order to support decision making in domains ranging from image recognition systems to identity control through face recognition. However, systems that rely on traditional statistics and prediction from historical or human-curated data also naturally inherit any past biased or discriminative tendencies. The overarching goal of the award is to mitigate this problem by using information representations that maintain its utility while eliminating information that could lead to discrimination against subgroups in a population. Specifically, this project will study the different trade-offs between utility and fairness of different data representations, and then identify solutions to reduce the gap to the best trade-off. Then, new representations and corresponding algorithms will be developed guided by such trade-off analysis. The investigators will provide performance limits based on the developed theory, and also evidence of efficacy in order to obtain fair machine learning systems and to gain societal trust. The application domain used in this research is face recognition systems. The undergraduate and graduate students who participate in the project will be trained to conduct cutting-edge research to integrate fairness into artificial intelligent based systems.”

    • Principal investigator: Vishnu Boddeti
    • Organization: Michigan State University
    • Award amount: $331,698

    Project description

  4. A new paradigm for the evaluation and training of inclusive automatic speech recognition

    “Automatic speech recognition can improve your productivity in small ways: rather than searching for a song, a product, or an address using a graphical user interface, it is often faster to accomplish these tasks using automatic speech recognition. For many groups of people, however, speech recognition works less well, possibly because of regional accents, or because of second-language accent, or because of a disability. This Fairness in AI project defines a new way of thinking about speech technology. In this new way of thinking, an automatic speech recognizer is not considered to work well unless it works well for all users, including users with regional accents, second-language accents, and severe disabilities. There are three sub-projects. The first sub-project will create black-box testing standards that speech technology researchers can use to test their speech recognizers, in order to test how useful their speech recognizer will be for different groups of people. For example, if a researcher discovers that their product works well for some people, but not others, then the researcher will have the opportunity to gather more training data, and to perform more development, in order to make sure that the under-served community is better-served. The second sub-project will create glass-box testing standards that researchers can use to debug inclusivity problems. For example, if a speech recognizer has trouble with a particular dialect, then glass-box methods will identify particular speech sounds in that dialect that are confusing the recognizer, so that researchers can more effectively solve the problem. The third sub-project will create new methods for training a speech recognizer in order to guarantee that it works equally well for all of the different groups represented in available data. Data will come from podcasts and the Internet. Speakers will be identified as members of a particular group if and only if they declare themselves to be members of that group. All of the developed software will be distributed open-source.”

    • Principal investigator: Mark Hasegawa-Johnson
    • Co-principal investigators: Zsuzsanna Fagyal, Najim Dehak, Piotr Zelasko, Laureano Moro-Velazquez
    • Organization: University of Illinois at Urbana-Champaign
    • Award amount: $500,000

    Project description

  5. A normative economic approach to fairness in AI

    “A vast body of work in algorithmic fairness is devoted to preventing artificial intelligence (AI) from exacerbating societal biases. The predominant viewpoints in this literature equates fairness with lack of bias or seeks to achieve some form of statistical parity between demographic groups. By contrast, this project pursues alternative approaches rooted in normative economics, the field that evaluates policies and programs by asking "what should be". The work is driven by two observations. First, fairness to individuals and groups can be realized according to people’s preferences represented in the form of utility functions. Second, traditional notions of algorithmic fairness may be at odds with welfare (the overall utility of groups), including the welfare of those groups the fairness criteria intend to protect. The goal of this project is to establish normative economic approaches as a central tool in the study of fairness in AI. Towards this end the team pursues two research questions. First, can the perspective of normative economics be reconciled with existing approaches to fairness in AI? Second, how can normative economics be drawn upon to rethink what fairness in AI should be? The project will integrate theoretical and algorithmic advances into real systems used to inform refugee resettlement decisions. The system will be examined from a fairness viewpoint, with the goal of ultimately ensuring fairness guarantees and welfare.”

    • Principal investigator: Yiling Chen
    • Co-principal investigator: Ariel Procaccia
    • Organization: Harvard University
    • Award amount: $560,345

    Project description

  6. Advancing optimization for threshold-agnostic fair AI systems

    “Artificial intelligence (AI) and machine learning technologies are being used in high-stakes decision-making systems like lending decision, employment screening, and criminal justice sentencing. A new challenge arising with these AI systems is avoiding the unfairness they might introduce and that can lead to discriminatory decisions for protected classes. Most AI systems use some kinds of thresholds to make decisions. This project aims to improve fairness-aware AI technologies by formulating threshold-agnostic metrics for decision making. In particular, the research team will improve the training procedures of fairness-constrained AI models to make the model adaptive to different contexts, applicable to different applications, and subject to emerging fairness constraints. The success of this project will yield a transferable approach to improve fairness in various aspects of society by eliminating the disparate impacts and enhancing the fairness of AI systems in the hands of the decision makers. Together with AI practitioners, the researchers will integrate the techniques in this project into real-world systems such as education analytics. This project will also contribute to training future professionals in AI and machine learning and broaden this activity by including training high school students and under-represented undergraduates.”

    • Principal investigator: Tianbao Yang
    • Co-principal investigators: Qihang Lin, Mingxuan Sun
    • Organization: University of Iowa
    • Award amount: $500,000

    Project description

  7. Toward fair decision making and resource allocation with application to AI-assisted graduate admission and degree completion

    “Machine learning systems have become prominent in many applications in everyday life, such as healthcare, finance, hiring, and education. These systems are intended to improve upon human decision-making by finding patterns in massive amounts of data, beyond what can be intuited by humans. However, it has been demonstrated that these systems learn and propagate similar biases present in human decision-making. This project aims to develop general theory and techniques on fairness in AI, with applications to improving retention and graduation rates of under-represented groups in STEM graduate programs. Recent research has shown that simply focusing on admission rates is not sufficient to improve graduation rates. This project is envisioned to go beyond designing "fair classifiers" such as fair graduate admission that satisfy a static fairness notion in a single moment in time, and designs AI systems that make decisions over a period of time with the goal of ensuring overall long-term fair outcomes at the completion of a process. The use of data-driven AI solutions can allow the detection of patterns missed by humans, to empower targeted intervention and fair resource allocation over the course of an extended period of time. The research from this project will contribute to reducing bias in the admissions process and improving completion rates in graduate programs as well as fair decision-making in general applications of machine learning.”

    • Principal investigator: Furong Huang
    • Co-principal investigators: Min Wu, Dana Dachman-Soled
    • Organization: University of Maryland, College Park
    • Award amount: $625,000

    Project description

  8. BRMI — bias reduction in medical information

    “This award, Bias Reduction In Medical Information (BRIMI), focuses on using artificial intelligence (AI) to detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society. BRIMI offers outsized promise for increased equity in health information, improving fairness in AI, medicine, and in the information ecosystem online (e.g., health websites and social media content). BRIMI's novel study of biases stands to greatly advance the understanding of the challenges that minority groups and individuals face when seeking health information. By including specific interventions for both patients and doctors and advancing the state-of-the-art in public health and fact checking organizations, BRIMI aims to inform public policy, increase the public's critical literacy, and improve the well-being of historically under-served patients. The award includes significant outreach efforts, which will engage minority communities directly in our scientific process; broad stakeholder engagement will ensure that the research approach to the groups studied is respectful, ethical, and patient-centered. The BRIMI team is composed of academics, non-profits, and industry partners, thus improving collaboration and partnerships across different sectors and multiple disciplines. The BRIMI project will lead to fundamental research advances in computer science, while integrating deep expertise in medical training, public health interventions, and fact checking. BRIMI is the first large scale computational study of biased health information of any kind. This award specifically focuses on bias reduction in the health domain; its foundational computer science advances and contributions may generalize to other domains, and it will likely pave the way for studying bias in other areas such as politics and finances.”

    • Principal investigator: Shiri Dori-Hacohen
    • Co-principal investigators: Sherry Pagoto, Scott Hale
    • Organization: University of Connecticut
    • Award amount: $392,994

    Project description

  9. A novel paradigm for fairness-aware deep learning models on data streams

    “Massive amounts of information are transferred constantly between different domains in the form of data streams. Social networks, blogs, online businesses, and sensors all generate immense data streams. Such data streams are received in patterns that change over time. While this data can be assigned to specific categories, objects and events, their distribution is not constant. These categories are subject to distribution shifts. These distribution shifts are often due to the changes in the underlying environmental, geographical, economic, and cultural contexts. For example, the risks levels in loan applications have been subject to distribution shifts during the COVID-19 pandemic. This is because loan risks are based on factors associated to the applicants, such as employment status and income. Such factors are usually relatively stable, but have changed rapidly due to the economic impact of the pandemic. As a result, existing loan recommendation systems need to be adapted to limited examples. This project will develop open software to help users evaluate online fairness-in algorithms, mitigate potential biases, and examine utility-fairness trade-offs. It will implement two real-world applications: online crime event recognition from video data and online purchase behavior prediction from click-stream data. To amplify the impact of this project in research and education, this project will leverage STEM programs for students with diverse backgrounds, gender and race/ethnicity. This project includes activities including seminars, workshops, short courses, and research projects for students.”

    • Principal investigator: Feng Chen
    • Co-principal investigators: Latifur Khan, Xintao Wu, Christan Grant
    • Organization: University of Texas at Dallas
    • Award amount: $392,993

    Project description

  10. A human-centered approach to developing accessible and reliable machine translation

    “This Fairness in AI project aims to develop technology to reliably enhance cross-lingual communication in high-stakes contexts, such as when a person needs to communicate with someone who does not speak their language to get health care advice or apply for a job. While machine translation technology is frequently used in these conditions, existing systems often make errors that can have severe consequences for a patient or a job applicant. Further, it is challenging for people to know when automatic translations might be wrong when they do not understand the source or target language for translation. This project addresses this issue by developing accessible and reliable machine translation for lay users. It will provide mechanisms to guide users to recognize and recover from translation errors, and help them make better decisions given imperfect translations. As a result, more people will be able to use machine translation reliably to communicate across language barriers, which can have far-reaching positive consequences on their lives."

    • Principal investigator: Marine Carpuat
    • Co-principal investigators: Niloufar Salehi, Ge Gao
    • Organization: University of Maryland, College Park
    • Award amount: $392,993

    Project description

  11. AI algorithms for fair auctions, pricing, and marketing

    “This project develops algorithms for making fair decisions in AI-mediated auctions, pricing, and marketing, thus advancing national prosperity and economic welfare. The deployment of AI systems in business settings has thrived due to direct access to consumer data, the capability to implement personalization, and the ability to run algorithms in real-time. For example, advertisements users see are personalized since advertisers are willing to bid more in ad display auctions to reach users with particular demographic features. Pricing decisions on ride-sharing platforms or interest rates on loans are customized to the consumer's characteristics in order to maximize profit. Marketing campaigns on social media platforms target users based on the ability to predict who they will be able to influence in their social network. Unfortunately, these applications exhibit discrimination. Discriminatory targeting in housing and job ad auctions, discriminatory pricing for loans and ride-hailing services, and disparate treatment of social network users by marketing campaigns to exclude certain protected groups have been exposed. This project will develop theoretical frameworks and AI algorithms that ensure consumers from protected groups are not harmfully discriminated against in these settings. The new algorithms will facilitate fair conduct of business in these applications. The project also supports conferences that bring together practitioners, policymakers, and academics to discuss the integration of fair AI algorithms into law and practice.”

    • Principal investigator: Adam Elmachtoub
    • Co-principal investigators: Shipra Agrawal, Rachel Cummings, Christian Kroer, Eric Balkanski
    • Organization: Columbia University
    • Award amount: $392,993

    Project description

  12. Using explainable AI to increase equity and transparency in the juvenile justice system’s use of risk scores

    “Throughout the United States, juvenile justice systems use juvenile risk and need-assessment (JRNA) scores to identify the likelihood a youth will commit another offense in the future. This risk assessment score is then used by juvenile justice practitioners to inform how to intervene with a youth to prevent reoffending (e.g., referring youth to a community-based program vs. placing a youth in a juvenile correctional center). Unfortunately, most risk assessment systems lack transparency and often the reasons why a youth received a particular score are unclear. Moreover, how these scores are used in the decision making process is sometimes not well understood by families and youth affected by such decisions. This possibility is problematic because it can hinder individuals’ buy-in to the intervention recommended by the risk assessment as well as mask potential bias in those scores (e.g., if youth of a particular race or gender have risk scores driven by a particular item on the assessment). To address this issue, project researchers will develop automated, computer-generated explanations for these risk scores aimed at explaining how these scores were produced. Investigators will then test whether these better-explained risk scores help youth and juvenile justice decision makers understand the risk score a youth is given. In addition, the team of researchers will investigate whether these risk scores are working equally well for different groups of youth (for example, equally well for boys and for girls) and identify any potential biases in how they are being used in an effort to understand how equitable the decision making process is for demographic groups based on race and gender. The project is embedded within the juvenile justice system and aims to evaluate how real stakeholders understand how the risk scores are generated and used within that system based on actual juvenile justice system data.”

    • Principal investigator: Trent Buskirk
    • Co-principal investigators: Kelly Murphy
    • Organization: Bowling Green State University
    • Award amount: $392,993

    Project description

  13. Breaking the tradeoff barrier in algorithmic fairness

    “In order to be robust and trustworthy, algorithmic systems need to usefully serve diverse populations of users. Standard machine learning methods can easily fail in this regard, e.g. by optimizing for majority populations represented within their training data at the expense of worse performance on minority populations. A large literature on "algorithmic fairness" has arisen to address this widespread problem. However, at a technical level, this literature has viewed various technical notions of "fairness" as constraints, and has therefore viewed "fair learning" through the lens of constrained optimization. Although this has been a productive viewpoint from the perspective of algorithm design, it has led to tradeoffs being centered as the central object of study in "fair machine learning". In the standard framing, adding new protected populations, or quantitatively strengthening fairness constraints, necessarily leads to decreased accuracy overall and within each group. This has the effect of pitting the interests of different stakeholders against one another, and making it difficult to build consensus around "fair machine learning" techniques. The over-arching goal of this project is to break through this "fairness/accuracy tradeoff" paradigm.”

    • Principal investigator: Aaron Roth
    • Co-principal investigator: Michael Kearns
    • Organization: University of Pennsylvania
    • Award amount: $392,992

    Project description

  14. Advancing deep learning towards spatial fairness

    “The goal of spatial fairness is to reduce biases that have significant linkage to the locations or geographical areas of data samples. Such biases, if left unattended, can cause or exacerbate unfair distribution of resources, social division, spatial disparity, and weaknesses in resilience or sustainability. Spatial fairness is urgently needed for the use of artificial intelligence in a large variety of real-world problems such as agricultural monitoring and disaster management. Agricultural products, including crop maps and acreage estimates, are used to inform important decisions such as the distribution of subsidies and providing farm insurance. Inaccuracies and inequities produced by spatial biases adversely affect these decisions. Similarly, effective and fair mapping of natural disasters such as floods or fires is critical to inform live-saving actions and quantify damages and risks to public infrastructures, which is related to insurance estimation. Machine learning, in particular deep learning, has been widely adopted for spatial datasets with promising results. However, straightforward applications of machine learning have found limited success in preserving spatial fairness due to the variation of data distribution, data quantity, and data quality. The goal of this project is to develop a new generation of learning frameworks to explicitly preserve spatial fairness. The results and code will be made freely available and integrated into existing geospatial software. The methods will also be tested for incorporation in existing real systems (crop and water monitoring).”

    • Principal investigator: Xiaowei Jia
    • Co-principal investigators: Sergii Skakun, Yiqun Xie
    • Organization: University of Pittsburgh
    • Award amount: $755,098

    Project description

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team! We're looking for an outstanding Applied Scientist with either some background or strong interest in building simulation tools and algorithms for orchestration of a fleet of autonomous delivery drones. Managing a large number of concurrent autonomous drone flights that share airspace with other autonomous or manned aircrafts is a challenging problem. Be part of the team building simulation tools and algorithms to solve this at scale. This role will contribute to a portfolio of simulation tools managing concurrent airspace traffic for aviation systems. The ideal candidate is comfortable with a degree of risk taking and ambiguity and able to build consensus on the critical path. If you enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before, Prime Air could be the place for you. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver and directly impact Amazon’s customer’s worldwide. About the team Prime air has ambitious goals to offer its service to an increasing number of customers and enabling a large number of concurrent flights is central to achieving this. To this end, the air traffic management team is building algorithms, tools and services for orchestration of prime air's autonomous drone fleet.
CA, ON, Toronto
Amazon Games recherche un.e Chercheuse, Chercheur scientifique pour créer de nouvelles approches révolutionnaires en ML, RL et IA Générative qui raviront les joueuses et les joueurs. Dans ce rôle, vous collaborerez avec les Scientifiques en apprentissage automatique d'Amazon Games et Amazon Science pour imaginer et développer des outils, des processus et des fonctionnalités alimentés par l'IA générative à travers Amazon Games. Chez Amazon Games, notre ambition est de créer d’expériences inédites et audacieuses qui rassemblent et cultivent les communautés de joueurs et de joueuses. Notre équipe d'experts de l'industrie développe des jeux multijoueurs AAA et des propriétés intellectuelles originales, avec des équipes à Seattle, Orange County, San Diego, Montréal et Bucarest. À travers nos divisions - Studios, Publishing et Prime Gaming et en collaboration avec des partenaires externes, nous développons, publions et livrons des jeux et des expériences de contenu exceptionnelles pour les joueurs et joueuses. /// Amazon Games is seeking a highly effective Research Scientist to create new ground breaking ML, RL and Generative AI (Gen AI) approaches that delights player. In this role, you will collaborate with Amazon Science and Amazon Games Applied Scientists to research and develop generative AI-powered tools, pipelines and features across Amazon Games. At Amazon Games, our ambition is to create bold new experiences that foster community in and around our games. Our team of game industry veterans develops AAA multiplayer games and original IPs, with teams in Seattle, Orange County, San Diego, Montreal, and Bucharest. Amazon Games, through its Studios, Publishing, and Prime Gaming divisions collaborating with external partners, aims to develop, publish, and deliver compelling AAA games and content experiences for gamers to discover. Key job responsibilities Responsabilités - Rechercher, implémenter et produire des services d'IA/ML ambitieux et complexes pour Amazon Games. - Collaborer avec les équipes d'ingénieries, de conceptions et artistiques pour concevoir, développer et intégrer de nouveaux outils d'IA générative dans les flux de travail des équipes de développement. - Identifier et résoudre de manière proactive les problèmes qui affectent la qualité de vie des joueuses et les joueurs, des opérations et d’autres développeuses et développeurs. - Rester à jour et analyser les dernières avancées en technologie d'IA générative, et améliorer continuellement les fonctionnalités des produits lorsque des améliorations significatives en termes de coût, d'évolutivité, de qualité ou de fonctionnalité peuvent être réalisées. /// Responsibilities - Research, implement, and productionize ambitious and complex AI/ML services for Amazon Games. - Collaborate with game team engineers, designers and artists to design, develop, and integrate new generative AI tools into developer workflows. - Proactively identify and solve problems that affect the quality of life for players, operations, and other developers. - Stay up to date with and analyze the latest advancements in generative AI technology, and continuously improve product features where meaningful improvements in cost, scalability, quality, or functionality can be achieved. A day in the life Une journée type - Vous vous épanouissez dans un environnement collaboratif où vos décisions ont un impact et une influence significatifs. - Vous exprimer votre passion par la création d'expériences de jeu qui ravissent les joueurs et les joueuses. - Vous proposez d'excellents flux de travail, outils et innovations de jeu à vos collègues et aux équipes de développement et recherchez constamment l'amélioration. - Vous souhaitez faire partie de quelque chose d'excitant et unique dans l'écosystème du jeu. /// A day in the life - You thrive in a collaborative environment where your decisions have significant impact and influence. - You are passionate about building game experiences that delight players. - You deliver great workflows, tools, and game innovations to your fellow developers and constantly seek improvement. - You want to be part of something exciting and unique in the gaming ecosystem. About the team À propos de l'équipe L'équipe de recherche en IA d'Amazon Games Studio se concentre sur l'innovation en intelligence artificielle dans le domaine du jeu vidéo. Notre équipe hautement qualifiée et multidisciplinaire travaille sur l'apprentissage automatique, l'apprentissage par renforcement et l'IA générative pour réinventer le développement des jeux. Nous travaillons de près avec les équipes internes et nos studios partenaires pour donner vie à leur vision créative. Notre mission est d'utiliser l'IA de manière responsable pour transformer l'expérience de jeu, enrichir les récits, et fournir aux créateurs et créatrices des outils pratiques pour optimiser leurs chaînes de production. /// About the team The Amazon Games Studio AI Research team focuses on artificial intelligence innovation in gaming. Our highly skilled, multi-discipline team works across Machine Learning, Reinforcement Learning, and Generative AI to reimagine game development. We work closely with first-party game developers and partner studios to bring creative visions to life. Our mission is to use AI responsibly to transform gameplay experiences, enrich narratives, and provide creators with practical tools to optimize their production pipelines.