Amazon Physical Science Fellowship winners announced

Award recognizes three individuals who have shown the skills necessary to bridge the gap between fundamental scientific results in the physical sciences and the development of impactful technologies.

The Amazon Physical Science Fellowship was developed to foster collaboration between Amazon and the physics community for the purpose of accelerating the time from fundamental discovery to real-world application. More than 2,000 physics professors from around the world were invited to identify game-changing discoveries from the past two decades that could lead to products and services that will positively impact future generations.

These three selected fellows demonstrated an ability to identify scientific results from across the physical sciences with the potential to provide broad, positive impacts to society.

The winners are listed below.

Xiwen Gong

Xiwen Gong, PhD, is an assistant professor of chemical engineering at the University of Michigan, where she focuses on developing the next generation of soft electronic materials and devices by utilizing a transdisciplinary approach that unites physics, chemistry, and engineering.

Xiwen Gong
Xiwen Gong

Before joining the University of Michigan, Gong — who is also by courtesy an assistant professor of electrical and computer engineering, materials science and engineering, macromolecular science and engineering, and applied physics — worked as a post-doctoral fellow with Zhenan Bao, the K. K. Lee Professor of Chemical Engineering, at Stanford University’s Department of Chemical Engineering. At Stanford, Gong focused on developing soft and stretchable semiconductors and devices for wearable electronics (inSPIREd Talk). In 2018, Gong earned her PhD in electrical and computer engineering with Edward Sargent, University Professor of electrical and computer engineering, at the University of Toronto. During her PhD studies, Gong focused on the design of novel materials for solar energy harvesting, light emitting, and sensing. Her work has been published in Nature, Nature Materials, Nature Photonics, and other leading science publications. Gong received the Extraordinary Potential Prize and the “Rising Stars in EECS 2017” (Stanford University). In 2018, she was selected as one of the fourteen inaugural Schmidt Science Fellows.

Eric Ma

Eric Y. Ma PhD, is an assistant professor in physics and electrical engineering and computer science and the Georgia Lee Chair in Physics at the University of California, Berkeley. His research focuses on electromagnetic-matter interaction in uncommon regimes.

Eric Ma
Eric Ma

On the one hand, he develops new instruments that use microwave and light to probe the fundamental properties of quantum materials. On the other hand, he creates new devices and structures that use unconventional materials and inverse design to generate, manipulate, and detect electromagnetic fields. His research interests are expansive, though he is particularly excited about beyond-von–Neumann computing and human-computer interface.

Before joining UC Berkeley, Ma earned his PhD in applied physics at Stanford University, where he also conducted postdoc studies in applied physics and electrical engineering. He was also briefly a senior scientist at Apple. Ma is passionate about advancing access to undergraduate research and broadening collaborations between physics and engineering.

Tomas Martin

Tomas Martin, PhD, is senior lecturer in materials physics within the School of Physics at the University of Bristol, and director of the university’s Master of Science in Nuclear Science and Engineering program.

Tomas Martin
Tomas Martin

After earning a PhD at Bristol investigating the electronic properties of diamond surfaces, Martin worked in the renewable energy industry as a bank’s engineer on wind and solar power projects around the world, followed by four years as David Cockayne Junior Research Fellow in Materials at the University of Oxford. Martin is editor-in-chief of the scientific journal Materials Today Communications and is a published science fiction author.'

Martin’s research uses advanced microstructural characterization techniques to understand the structure and chemistry of materials for nuclear power plants, semiconductor devices and aerospace. His work aims to take a holistic approach to materials characterization using a combination of experimental techniques and computer modeling to understand the mechanisms behind materials behavior across the length scales, from individual atomic defects to large-scale stresses and chemistry changes in engineering components.

Martin is part of the core academic team running the University of Bristol’s Interface Analysis Centre microscope facility. His research group uses techniques including atom probe tomography, focused ion beam and electron microscopy, complemented by computational modeling, to understand materials degradation challenges such as corrosion, creep and radiation damage. He works with collaborators in many fields of academic research, as well as with industrial partners including EDF Energy, NNL, Rolls Royce and UKAEA.

Below are the Review Board of the Amazon Physical Science Fellowship, a distinguished group from academia and industry.

Review Board members

Philip Kim.jpg
Philip Kim

Philip Kim - Professor Philip Kim received his B.S in physics at Seoul National University in 1990 and received his Ph.D. in Applied Physics from Harvard University in 1999. He was Miller Postdoctoral Fellow in Physics from University of California, Berkeley during 1999-2001. He then joined the Department of Physics at Columbia University as a faculty member from 2002-2014. In 2014, he moved to Harvard University, where he is Professor of Physics and Professor of Applied Physics.

The focus of Prof. Kim’s group research is the mesoscopic investigation of transport phenomena, particularly, electric, thermal and thermoelectrical properties of low dimensional nanoscale materials. These materials include carbon nanotubes, organic and inorganic nanowires, 2-dimensional mesoscopic single crystals, and single organic molecules.

Professor Kim also received numerous honors and award including Tomassoni-Chisesi Prizes (2018); Vannevar Bush Faculty Fellowship (2018); Oliver E. Buckley Prize, American Physical Society (2014); Dresden Barkhausen Award (2012); IBM Faculty Award (2009); and Ho-Am Science Prize (2008). He is Elected member of the American Academy of Arts and Science (2020) and American Physical Society Fellow (2007). He graduated 21 PhD students and trained 32 postdoctoral fellows.

Young-Kee Kim - Young-Kee Kim is the Louis Block Distinguished Service Professor of Physics and Senior Advisor to the Provost for Global Scientific Initiatives at the University of Chicago. She is an experimental particle physicist, and devotes much of her research to understanding the origin of mass for fundamental particles.

Young-Kee Kim copy.jpg
Young-Kee Kim

Between 2004 and 2006, she co-led the CDF experiment at Fermilab and was Deputy Director of Fermilab between 2006 and 2013. She is currently working on the ATLAS particle physics experiment at the Large Hadron Collider at CERN as well as on accelerator physics research. Prior to Chicago, Young-Kee Kim was Professor of Physics at University of California, Berkeley. She was born in South Korea, and earned her BS and MS in Physics from Korea University, in 1984 and 1986, respectively, and her Ph.D. in Physics from the University of Rochester in 1990.

She conducted her postdoctoral research at Lawrence Berkeley National Laboratory. Young-Kee is a Fellow of the National Academy of Sciences, the American Academy of Arts and Sciences, the American Physical Society, the American Association for the Advancement of Science, and the Sloan Foundation. She received the Ho-Am Prize, the Women in Science Leadership Award from the Chicago Council of Science and Technology, the University of Rochester’s Distinguished Scholar Medal, and Korea University’s Alumni Award.

Hideo Mabuchi image.jpg
Hideo Mabuchi

Hideo Mabuchi - Hideo Mabuchi received an AB in Physics from Princeton and a PhD in Physics from Caltech. He served as Chair of the Department of Applied Physics at Stanford from 2010-2016.

His early scientific research was focused on understanding open quantum systems, quantum measurement, and the quantum-to-classical transition. In recent years his research group has turned towards fundamental issues of quantum engineering, such as quantum nonlinear dynamics, quantum feedback control and quantum model reduction. Along the way his group has also worked substantially on single-molecule biophysics, quantum information science, and quantum materials.

Major awards include the inaugural Mohammed Dahleh Distinguished Lectureship (UCSB) and a Fellowship from the John D. and Catherine T. MacArthur Foundation.

Matt McIlwain - Managing Director, Madrona Venture Group - Madrona is a venture capital firm based in Seattle, investing in mainly seed and Series A technology-based companies. For over two decades, the firm has been helping technology entrepreneurs launch and grow world-class companies

Matt McIlwain.jpg
Matt McIlwain

At Madrona, Matt invests in a broad range of software and data driven companies with a focus on cloud computing, dataware, intelligent applications and the intersections of innovation (where life science and data science intersect).

He believes in the Learning Loop for entrepreneurs who journey from curiosity to triangulation and decision making. This leads to positive outcomes and ongoing learnings. Matt has been named several times to the Forbes Midas List and list of Top 100 Venture Capitalists by CB Insights and The New York Times.

He was named Emerging Company Director of the year by the Puget Sound Business Journal. In 2011, he received the Washington Policy Center’s Champion of Freedom Award. Matt is a board member (and previous chair) of Fred Hutchinson Cancer Research Center and a board member of Washington Policy Center.

Matt enjoys going on adventures with his family, discussing public policy issues and trying out new technologies. Matt is a graduate of Dartmouth College and holds an MBA from Harvard Business School and a Master’s in Public Policy from Harvard’s Kennedy School of Government.

José Onuchic - José Onuchic is the Harry C & Olga K Wiess Professor of Physics and Astronomy, Chemistry and Biosciences at Rice University and the co-Director of the NSF-sponsored Center for Theoretical Biological Physics. His research looks at theoretical methods for molecular biophysics and gene networks.

Jose Onuchic.jpg
José Onuchic

He introduced the concept of protein folding funnels. Energy landscape theory and the funnel concept provide the framework needed to pose and to address the questions of protein folding and function mechanisms. He developed the tunneling pathways concept for electron transfer in proteins. He is also interested in stochastic effects in genetic networks with applications to bacteria decision-making and cancer. Further expanding his ideas coming from energy landscapes for protein folding, his group is now exploring chromatin folding and function and therefore modeling the 3D structure of the genome. He has received much recognition for his achievements. He was elected to the National Academy of Sciences in 2006.

He received the ICTP Prize in honor of Heisenberg in Trieste, Italy (1989) and the Beckman Young Investigator Award (1992). He is a fellow of the American Physical Society (1995), the American Academy of Arts and Sciences (2009), the Brazilian Academy of Sciences (2009), the Biophysical Society (2012) and the American Association for the Advancement of Science (2017). He received the Einstein Professorship by the Chinese Academy of Sciences (2011).

In 2014 he received the Diaspora Prize from the Ministry of Foreign Affairs and the Ministry of Industrial Development and Foreign Trade from Brazil. In 2015 he received The International Union of Biochemistry and Molecular Biology Medal. In 2018 he received National Order of Scientific Merit by the Brazilian National Council in Science and Technology. He received the 2019 American Physical Society’s Max Delbruck Prize in Biological Physics and was elected to Pontifical Academy of Sciences in 2020.

Babak Parviz - Vice President | Amazon — Babak is a Vice President at Amazon, and has led the launch of products/services such as Amazon Care, Amazon Comprehend Medical, Echo Frames, and Amazon Explore.

BabakParviz.jpg
Babak Parviz

Prior to joining Amazon in 2014, Babak was with Google as a Distinguished Engineer and Director at Google [x] where he built Google Glass and founded the robotic surgery and the active contact lens programs.

Babak received his BA in Literature (University of Washington), BS in Electronics (Sharif University of Technology), MS in Physics and MS and PhD in Electrical Engineering (University of Michigan), and completed his postdoctoral fellowship in Chemistry and Chemical Biology at Harvard University. He has received numerous recognitions including NSF Career Award, MIT Technology Review 35, University of Michigan Bicentennial Alumni Award, Time magazine’s best invention of the year, and IEEE CAS Industrial Pioneer Award.

Simone Severini - Simone Severini is a Professor of Physics of Information at University College London and is the Director of Quantum Computing at AWS.

Simone Severini.jpg
Simone Severini

As Director, Simone contributed to grow the initiatives of AWS in Quantum Technologies, including the Amazon Braket service and the AWS Center for Quantum Computing in partnership with Caltech.

During his academic career, Simone served as a grant reviewer for EPSRC (UK), NSF (US), NSFC (China), European Commission, Research Council of Norway, National Science Center (Poland), Dutch Research Council, Israel Science Foundation, MITACS (Canada), NSERC (Computer Science Evaluation Group), The Royal Society (International Exchanges Committee).

Our inspiration

Building on the formulation of Maxwell’s equations in 1865, Heinrich Hertz demonstrated in 1888 that radio waves can be generated, transmitted, and detected in a laboratory setting. Though Hertz doubted this discovery would lead to any practical application, it provided the game-changing experimental results that inspired Guglielmo Marconi to develop a viable radio system, transmitting the first signals across the Atlantic Ocean in 1902.

It took fourteen years from an important experimental observation by Hertz until the radio became widespread. Now, we are interested in identifying key scientific findings since the year 2000 and working with big thinkers who can help foster their development into engineered products and services at a much faster pace. We aim to identify the modern-day equivalents of the Hertz experiment.

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.