Bernard: A stateful neural open-domain socialbot

By University of California, San Diego
2019
Download Copy BibTeX
Copy BibTeX
We propose Bernard: a framework for an engaging open-domain socialbot. While the task of open-domain dialog generation remains a difficult one, we explore various strategies to generate coherent dialog given an arbitrary dialog history. We incorporate a stateful autonomous dialog manager using non-deterministic finite automata to control multi-turn conversations. We show that powerful pretrained language models are capable of generating coherent and topical responses in the presence of grounding facts. Finally, we implement Acknowledge-Retrieve- Reply strategy to combine template-based and neural dialog generation for greater diversity and increased naturalness. Extensive human evaluation shows that the combination of generative models and retrieval models in a stateful dialog machine can achieve desired user experiences in terms of topic diversity and engagingness, as showed in extensive human evaluation.

Latest news

The latest updates, stories, and more about Alexa Prize.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-Read more