Alexa Prize Proceedings

The Alexa Prize Proceedings publishes the research in conversational AI from the competition. Amazon works closely with university teams to provide a testbed for research to address the challenges with dialog management, natural language understanding, contextual modeling, commonsense reasoning and response generation, and these proceedings seek to capture the advances in those areas that result from these efforts. Authors are free to make additional hardcopy publishing arrangements, but Amazon will not produce hardcopies of these volumes.
93 results found
  • Hangjie Shi, Leslie Ball, Govind Thattai, Desheng Zhang, Lucy Hu, Qiaozi (QZ) Gao, Suhaila Shakiah, Xiaofeng Gao, Aishwarya Padmakumar, Bofei Yang, Cadence Chung, Dinakar Guthy, Gaurav Sukhatme, Karthika Arumugam, Matthew Wen, Osman Ipek, Patrick Lange, Rohan Khanna, Shreyas Pansare, Vasu Sharma, Chao Zhang, Cris Flagg, Daniel Pressel, Lavina Vaz, Luke Dai, Prasoon Goyal, Sattvik Sahai, Shaohua Liu, Yao Lu, Anna Gottardi, Shui Hu, Yang Liu, Dilek Hakkani-Tür, Kate Bland, Heather Rocker, James Jeun, Yadunandana Rao, Michael Johnston, Akshaya Iyengar, Arindam Mandal, Prem Natarajan, Reza Ghanadan
    Alexa Prize SimBot Challenge Proceedings
    2023
    The Alexa Prize program has empowered numerous university students to explore, experiment, and showcase their talents in building conversational agents through challenges like the SocialBot Grand Challenge and the TaskBot Challenge. As conversational agents increasingly appear in multimodal and embodied contexts, it is important to explore the affordances of conversational interaction augmented with computer
  • Carnegie Mellon University
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    Tartan is a multi-domain task-oriented bot that assists users with two different tasks: 1. cooking with recipes from Whole Foods and 2. doing projects from WikiHow. The bot’s system is divided into two stages. In the first stage, the bot assists the user in identifying a task that they want to do. In the second stage, the bot guides the users through sequences of step-by-step instructions. We developed
  • University of Glasgow
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    We present GRILLBot, a multi-modal task-oriented voice assistant to guide users through complex real-world tasks for the Alexa TaskBot Challenge. An effective TaskBot has to guide a user through a long and complex task, be engaging, and help solve problems along the way. GRILLBot achieves this in the domains of cooking and home improvement by helping search over a large task corpus with mixed- initiative
  • Texas A&M University
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    In this paper, we present Howdy Y’all, a multi-modal task-oriented dialogue agent developed for the 2021-2022 Alexa Prize TaskBot competition. Our design principles guiding Howdy Y’all aim for high user satisfaction through friendly and trustworthy encounters, minimization of negative conversation edge cases, and wide coverage over many tasks. Hence, Howdy Y’all is built upon a rapid prototyping platform
  • National Taiwan University
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    This paper introduces Miutsu, National Taiwan University’s Alexa Prize TaskBot, which is designed to assist users in completing tasks requiring multiple steps and decisions in two different domains – home improvement and cooking. We overview our system design and architectural goals, and detail the proposed core elements, including question answering, task retrieval, social chatting, and various conversational
  • Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    We present TacoBot, a task-oriented dialogue system built for the inaugural Alexa Prize TaskBot Challenge, which assists users in completing multi-step cooking and home improvement tasks. TacoBot is designed with a user-centered principle and aspires to deliver a collaborative and accessible dialogue experience. Towards that end, it is equipped with accurate language understanding, flexible dialogue management
  • University of Pennsylvania
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    We describe QuakerBot, a dialog system that helps users with household tasks and a participant in the Alexa Prize TaskBot Challenge. QuakerBot can process a variety of user requests, search for instructions from web resources such as wikiHow or Whole Foods Market recipes, answer related questions, and so on. Its components simultaneously consist of large language models with an impressive few-shot performance
  • NOVA University Lisbon
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    This paper describes the vision, scientific contributions, and technical details of the Task Wizard (TWIZ) team’s participation in the Alexa TaskBot Challenge 2021. Our bot design envisions the support of an engaging experience, where users are guided through multimodal conversations, towards the successful completion of the selected task. This is achieved through four key principles: a) robust dialog interaction
  • University College London
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    Conversational Artificial Intelligence (AI) has been a long-standing area of exploration in the research community and has now penetrated both academia and industries with products such as Siri and Alexa. In this work, we present COoking-aNd-DIy-TAsk-based (Condita) ChatBot, a task-oriented dialogue system, for the 2021 Alexa Prize TaskBot Challenge. Condita provides an engaging multi-modal agent that assists
  • University of Massachusetts Amherst
    Alexa Prize TaskBot Challenge 1 Proceedings
    2022
    We present Maruna Bot, a Task-Oriented Dialogue System (TODS) that assists people in cooking or Do-It-Yourself (DIY) tasks using either a speech-only or multimodal (speech and screen) interface. Building such a system is challenging, because it touches many research areas including language understanding, text generation, task planning, dialogue state tracking, question answering, multi-modal retrieval,

Latest news

The latest updates, stories, and more about Alexa Prize.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more