SocialBot Grand Challenge FAQs

Frequently asked questions about the challenge.
General
What is a SocialBot?
In the context of Alexa Prize, a SocialBot is an Alexa skill that can engage customers in a conversation about popular topics such as entertainment, sports, politics, technology, and fashion.
Can I choose to build any kind of conversational bot?
No, this competition focuses solely on SocialBots. Your SocialBot will need to converse about a wide range of popular societal topics and current events, and not only topics of your choosing. You will develop your own technologies relevant to your approach, such as natural language understanding, dialog management, knowledge acquisition, commonsense reasoning, conversational planning, machine learning, natural language generation, etc. Far-field automatic speech recognition (ASR) and text-to-speech (TTS) will be provided by Amazon, along with additional data, models, and tools.
What will my SocialBot do?
Your SocialBot will be an Alexa skill that can converse coherently and engagingly with humans on popular topics and current events. If your SocialBot advances to the pertinent stage of the competition, Alexa users in the U.S. may ask to converse with your SocialBot about topics of interest to them, such as baseball playoffs, celebrity gossip, or scientific breakthroughs. For example:
  • User: Let’s chat about the Mars Mission.
  • SocialBot: There are multiple Mars missions, some public and some private.
  • User: Who do you think will succeed?
  • SocialBot: I think more than one will succeed. The first one to get to Mars will open the doors for others.
  • User: I’d love to go to Mars.
  • SocialBot: Me too. Luckily I can hitch a ride on any computer.
  • User: That’s very funny.
  • SocialBot: The biggest challenge isn’t technology, it’s funding. It will cost $500 billion to send humans to Mars.
Your SocialBot will continue turn-by-turn interaction, starting with a topic the user asked for, until the user chooses to stop. Like an everyday human conversation, the interaction may shift naturally to related topics, as in the above example, but the conversation should remain coherent, relevant, and engaging. Your SocialBot may suggest topics to keep the conversation flowing. The goal is to keep the conversation from deteriorating to the point where the user loses interest.
How will I build my SocialBot?
You will use the Alexa Skills Kit (ASK) to build an Alexa skill, hosted on AWS Lambda, that will create the end-to-end conversational experience for a user. Using the provided APIs, your skill will receive as input the text of the user’s utterance, and produce as output a text sentence that will be spoken to the user. You do not need to tackle ASR (automatic speech recognition) or TTS (text to speech). You will also be provided with the CoBot Toolkit (a conversational bot toolkit), a software development kit that works with ASK and was built specifically for Alexa Prize teams to reduce the involved engineering in setting up a SocialBot and allow teams to focus on the science.


Your skill will need to determine an appropriate response at each turn of the conversation. It will also need to keep up with current news and events using the provided data sources. You may use additional data sources or libraries if you wish, subject to the terms described in the Official Rules.
What is the Alexa Skills Kit (ASK)?
The Alexa Skills Kit (ASK) is a collection of free, self-service APIs, tools, documentation, and code samples that make it fast and easy for you to add skills to Alexa. Your team will use ASK to build, deploy, and test a SocialBot that is capable of conversing with millions of Alexa users.
Competition details
What is the goal of the challenge?
The goal of the SocialBot Grand challenge is to advance several areas of conversational AI including natural language understanding (NLU), context modeling, dialog management, commonsense reasoning, natural language generation (NLG), and knowledge acquisition. The grand challenge objective is to create a SocialBot that converses coherently and engagingly with humans on popular topics for 20 minutes while achieving a user rating of at least 4.0/5.0.
How will winners be selected?
Through various phases of the competition, SocialBots will be evaluated based on feedback from Alexa users and assessment by Amazon.


Following the initial feedback period, SocialBots that have been certified and published will be evaluated on criteria such as the average interaction rating, uptime requirements, and ability to filter offensive content in order to advance to the Semifinals Interaction Period.



During the semifinals interaction period, Alexa customers will evaluate the semifinalist SocialBots. The two SocialBots with the highest Semifinals Interaction Rating Average and up to three more SocialBots selected by Amazon will advance to the finals.



Teams that advance to and complete the Semifinals Interaction Period, regardless of whether they advanced to the Finals Event, will be eligible to compete for Scientific Invention and Innovation Prizes based on the level of scientific invention and innovation demonstrated by each Entrant Team throughout the Competition.



The Teams whose SocialBots attain the three highest Composite Scores during the finals event will be the winners of the Overall Performance Prizes.
Will this competition be judged like a Turing Test?
No. The goal of the Alexa Prize is to create SocialBots that engage in interesting, human-like conversations, not to make them indistinguishable from a human when compared side-by-side. While the SocialBots built for the Alexa Prize will be human-like in some respects, they will be very different in others, and could easily reveal themselves in a Turing Test. For example, SocialBots may have ready access to much more information than a human. Asking the SocialBots to act like a human could diminish the customer experience and hinder the efforts of the participants to build the best SocialBot to further conversational AI.
When and where is the finals event?
The finals event will be held in July 2023 at a location to be determined, with a science invention and innovation presentation review to follow. The competition results will be announced in August 2023.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Official Rules. External funding must be disclosed to Amazon.
Will Alexa customers be able to engage with our SocialBot?
Your team will be required to submit its SocialBot for certification and publication by the Amazon Alexa team. After certification, you will enter the Internal Amazon Beta Period, where Amazon employees will test your SocialBot and provide feedback. After the Internal Amazon Beta Period, we will allow Alexa users to try your SocialBot and provide feedback to you. Amazon may impose requirements that the SocialBots must meet before they will be made available to Alexa users. Such requirements may include, among other things, a minimum average customer rating, uptime requirements, or the ability to consistently filter offensive content.
Which Alexa users will be able to interact with the SocialBots, and what languages must they support?
SocialBots will be made available to Alexa users in the United States or who select the United States as their preferred marketplace. Your team must build its SocialBot using U.S. English.
Will we publish our research from the Alexa Prize?
Yes. Publishing research papers as an outcome of your work on Alexa Prize is required for all teams participating in the competition, although teams may not publish Amazon confidential information, as described in the Official Rules. The Alexa Prize requires all teams to submit a technical paper for the Alexa Prize proceedings. Your SocialBot will not be selected for the finals if your team does not submit a technical paper for Alexa Prize proceedings. Papers will be published online at the end of the competition and made publicly available.

Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review at least two weeks before the submission deadlines and no research papers are published before the Alexa Prize proceedings are published, unless Amazon approves otherwise in writing.
Who will own the intellectual property rights in my submission?
You will retain ownership over your SocialBot. Amazon will have a non-exclusive license to any technology or software you develop in connection with the competition. See the Official Rules for details.
Eligibility
Who can apply to participate?
The Alexa Prize is open to full-time students enrolled in an accredited university, with the exception of universities in Cuba, Iran, Syria, North Korea, Sudan, the region of Crimea, and where prohibited by law (see Official Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Alexa Prize is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout my participation in the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province, or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors, and contractors are not eligible to participate. See Official Rules for additional restrictions.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by Amazon. Up to ten teams will be selected and sponsored by Amazon. All teams will receive a $250,000 grant intended to support two full-time students and a month of faculty time, free Alexa devices, and free AWS hosting including access to CPU and GPU based machines, SQL and NoSQL databases, and object storage. See Official Rules for details.
How many team members can our team have?
There is no minimum or maximum number of team members. All team members must be enrolled in their university throughout their participation. All teams will receive a $250,000 grant regardless of how many members are on the team. We recommend a team with four to six students with diverse fields of study or areas of expertise.
Can students from different universities be on the same team?
No. Teams must be comprised of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team. Multiple teams cannot have the same faculty advisor.
Can I participate on two separate teams?
No. You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be comprised of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical directions and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, there will be a period of time during which faculty advisors may request to remove or add members to the team, subject to approval by Amazon. See Official Rules for details.
Can we discuss our SocialBot with faculty or students who aren’t on our team?
Only team members may work on their SocialBots. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply?
Begin the application via YouNoodle.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process.
Do all team members have to apply?
Each team must have a team lead, who should submit only one application on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed. Teams will be selected by Amazon based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable evaluation of your proposal.
Prizes
What are the prizes for winning the competition?
Overall Performance Prize: For the three teams that build the SocialBot with the highest overall performance, the first-place team will win $250,000, the second-place team will win $50,000, and the third-place team will win $25,000. These prizes will be paid directly to the students on each winning team.


Scientific Invention and Innovation Prize: For the three teams that demonstrate the most scientific invention and innovation throughout the competition, the first-place team will win $250,000, the second-place team will win $50,000, and the third-place team will win $25,000. These prizes will be paid directly to the students on each winning team.



Grand Prize: If and only if the SocialBot of the team that wins the first-place Overall Performance Prize also achieves the grand challenge of conversing coherently and engagingly with humans for 20 minutes in at least two-thirds of its conversations at the finals event and achieves a 4.0 or higher composite score, that team’s university will be awarded a $1 million research grant.



See Official Rules for details.
Do we get a stipend and devices to participate in the Alexa Prize?
Up to ten teams will be sponsored to participate in the competition. Each sponsored team’s university will receive a $250,000 research grant to help fund the team’s participation.


The sponsorship includes Alexa-enabled devices, free AWS services to support the development of the team’s SocialBot, and support from the Alexa Prize team.
How can the grant be spent?
The grant is intended to support two full-time students for the duration of the competition and one month of the faculty advisor’s salary. No more than 35% of the research grant may be allocated to administrative fees. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
How will the prizes be distributed among a team?
Each Overall Performance Prize and the Scientific Invention and Innovation Prize will be distributed equally among the members of each winning team.
Timeline
What are the key milestones of the competition?
Teams must submit their applications by October 5, 2022. Teams selected to participate in the competition will be notified in October of November 2022. The competition will run from about November 2022 through August 2023. See Official Rules for details.

Latest news

The latest updates, stories, and more about Alexa Prize.
  • Behnam Hedayatnia
    March 5, 2019
    The 2018 Alexa Prize featured eight student teams from four countries, each of which adopted distinctive approaches to some of the central technical questions in conversational AI. We survey those approaches in a paper we released late last year, and the teams themselves go into even greater detail in the papers they submitted to the latest Alexa Prize Proceedings. Here, we touch on just a few of the teams’ innovations.
  • Anushree Venkatesh
    February 27, 2019
    To ensure that Alexa Prize contestants can concentrate on dialogue systems — the core technology of socialbots — Amazon scientists and engineers built a set of machine learning modules that handle fundamental conversational tasks and a development environment that lets contestants easily mix and match existing modules with those of their own design.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning and generative AI background, to focus on the development of software development skills of Nova foundational models. As a Principal Applied Scientist, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically strong and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist II, with a strong background in Machine Learning and Generative AI to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers' shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search, image recognition, and multi-modal AI to deliver significant impact for the business. In addition, you will be at the forefront of leveraging Generative AI (GenAI) technologies, including Large Language Models (LLMs) and foundation models, to drive advanced language understanding, creative ad content generation, and retrieval-augmented generation (RAG). You will also design and build agentic AI systems capable of autonomous, multi-step reasoning, tool use, and chain-of-thought decision-making, while applying techniques such as prompt engineering, fine-tuning, RLHF (Reinforcement Learning from Human Feedback), and embedding-based retrieval to develop scalable, production-grade solutions. Ideal candidates will have hands-on experience fine-tuning, evaluating, and deploying LLMs at scale, along with a strong understanding of emerging GenAI paradigms including agentic workflows and responsible AI practices. You should be able to work cross-functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists, guiding them to deliver high-impact products and services for Amazon customers and sellers, and fostering a culture of innovation around the latest advancements in Generative AI and LLM technologies. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist II on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs