SocialBot Grand Challenge FAQs

Frequently asked questions about the challenge.
General
What is a SocialBot?
In the context of Alexa Prize, a SocialBot is an Alexa skill that can engage customers in a conversation about popular topics such as entertainment, sports, politics, technology, and fashion.
Can I choose to build any kind of conversational bot?
No, this competition focuses solely on SocialBots. Your SocialBot will need to converse about a wide range of popular societal topics and current events, and not only topics of your choosing. You will develop your own technologies relevant to your approach, such as natural language understanding, dialog management, knowledge acquisition, commonsense reasoning, conversational planning, machine learning, natural language generation, etc. Far-field automatic speech recognition (ASR) and text-to-speech (TTS) will be provided by Amazon, along with additional data, models, and tools.
What will my SocialBot do?
Your SocialBot will be an Alexa skill that can converse coherently and engagingly with humans on popular topics and current events. If your SocialBot advances to the pertinent stage of the competition, Alexa users in the U.S. may ask to converse with your SocialBot about topics of interest to them, such as baseball playoffs, celebrity gossip, or scientific breakthroughs. For example:
  • User: Let’s chat about the Mars Mission.
  • SocialBot: There are multiple Mars missions, some public and some private.
  • User: Who do you think will succeed?
  • SocialBot: I think more than one will succeed. The first one to get to Mars will open the doors for others.
  • User: I’d love to go to Mars.
  • SocialBot: Me too. Luckily I can hitch a ride on any computer.
  • User: That’s very funny.
  • SocialBot: The biggest challenge isn’t technology, it’s funding. It will cost $500 billion to send humans to Mars.
Your SocialBot will continue turn-by-turn interaction, starting with a topic the user asked for, until the user chooses to stop. Like an everyday human conversation, the interaction may shift naturally to related topics, as in the above example, but the conversation should remain coherent, relevant, and engaging. Your SocialBot may suggest topics to keep the conversation flowing. The goal is to keep the conversation from deteriorating to the point where the user loses interest.
How will I build my SocialBot?
You will use the Alexa Skills Kit (ASK) to build an Alexa skill, hosted on AWS Lambda, that will create the end-to-end conversational experience for a user. Using the provided APIs, your skill will receive as input the text of the user’s utterance, and produce as output a text sentence that will be spoken to the user. You do not need to tackle ASR (automatic speech recognition) or TTS (text to speech). You will also be provided with the CoBot Toolkit (a conversational bot toolkit), a software development kit that works with ASK and was built specifically for Alexa Prize teams to reduce the involved engineering in setting up a SocialBot and allow teams to focus on the science.


Your skill will need to determine an appropriate response at each turn of the conversation. It will also need to keep up with current news and events using the provided data sources. You may use additional data sources or libraries if you wish, subject to the terms described in the Official Rules.
What is the Alexa Skills Kit (ASK)?
The Alexa Skills Kit (ASK) is a collection of free, self-service APIs, tools, documentation, and code samples that make it fast and easy for you to add skills to Alexa. Your team will use ASK to build, deploy, and test a SocialBot that is capable of conversing with millions of Alexa users.
Competition details
What is the goal of the challenge?
The goal of the SocialBot Grand challenge is to advance several areas of conversational AI including natural language understanding (NLU), context modeling, dialog management, commonsense reasoning, natural language generation (NLG), and knowledge acquisition. The grand challenge objective is to create a SocialBot that converses coherently and engagingly with humans on popular topics for 20 minutes while achieving a user rating of at least 4.0/5.0.
How will winners be selected?
Through various phases of the competition, SocialBots will be evaluated based on feedback from Alexa users and assessment by Amazon.


Following the initial feedback period, SocialBots that have been certified and published will be evaluated on criteria such as the average interaction rating, uptime requirements, and ability to filter offensive content in order to advance to the Semifinals Interaction Period.



During the semifinals interaction period, Alexa customers will evaluate the semifinalist SocialBots. The two SocialBots with the highest Semifinals Interaction Rating Average and up to three more SocialBots selected by Amazon will advance to the finals.



Teams that advance to and complete the Semifinals Interaction Period, regardless of whether they advanced to the Finals Event, will be eligible to compete for Scientific Invention and Innovation Prizes based on the level of scientific invention and innovation demonstrated by each Entrant Team throughout the Competition.



The Teams whose SocialBots attain the three highest Composite Scores during the finals event will be the winners of the Overall Performance Prizes.
Will this competition be judged like a Turing Test?
No. The goal of the Alexa Prize is to create SocialBots that engage in interesting, human-like conversations, not to make them indistinguishable from a human when compared side-by-side. While the SocialBots built for the Alexa Prize will be human-like in some respects, they will be very different in others, and could easily reveal themselves in a Turing Test. For example, SocialBots may have ready access to much more information than a human. Asking the SocialBots to act like a human could diminish the customer experience and hinder the efforts of the participants to build the best SocialBot to further conversational AI.
When and where is the finals event?
The finals event will be held in July 2023 at a location to be determined, with a science invention and innovation presentation review to follow. The competition results will be announced in August 2023.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Official Rules. External funding must be disclosed to Amazon.
Will Alexa customers be able to engage with our SocialBot?
Your team will be required to submit its SocialBot for certification and publication by the Amazon Alexa team. After certification, you will enter the Internal Amazon Beta Period, where Amazon employees will test your SocialBot and provide feedback. After the Internal Amazon Beta Period, we will allow Alexa users to try your SocialBot and provide feedback to you. Amazon may impose requirements that the SocialBots must meet before they will be made available to Alexa users. Such requirements may include, among other things, a minimum average customer rating, uptime requirements, or the ability to consistently filter offensive content.
Which Alexa users will be able to interact with the SocialBots, and what languages must they support?
SocialBots will be made available to Alexa users in the United States or who select the United States as their preferred marketplace. Your team must build its SocialBot using U.S. English.
Will we publish our research from the Alexa Prize?
Yes. Publishing research papers as an outcome of your work on Alexa Prize is required for all teams participating in the competition, although teams may not publish Amazon confidential information, as described in the Official Rules. The Alexa Prize requires all teams to submit a technical paper for the Alexa Prize proceedings. Your SocialBot will not be selected for the finals if your team does not submit a technical paper for Alexa Prize proceedings. Papers will be published online at the end of the competition and made publicly available.

Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review at least two weeks before the submission deadlines and no research papers are published before the Alexa Prize proceedings are published, unless Amazon approves otherwise in writing.
Who will own the intellectual property rights in my submission?
You will retain ownership over your SocialBot. Amazon will have a non-exclusive license to any technology or software you develop in connection with the competition. See the Official Rules for details.
Eligibility
Who can apply to participate?
The Alexa Prize is open to full-time students enrolled in an accredited university, with the exception of universities in Cuba, Iran, Syria, North Korea, Sudan, the region of Crimea, and where prohibited by law (see Official Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Alexa Prize is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout my participation in the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province, or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors, and contractors are not eligible to participate. See Official Rules for additional restrictions.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by Amazon. Up to ten teams will be selected and sponsored by Amazon. All teams will receive a $250,000 grant intended to support two full-time students and a month of faculty time, free Alexa devices, and free AWS hosting including access to CPU and GPU based machines, SQL and NoSQL databases, and object storage. See Official Rules for details.
How many team members can our team have?
There is no minimum or maximum number of team members. All team members must be enrolled in their university throughout their participation. All teams will receive a $250,000 grant regardless of how many members are on the team. We recommend a team with four to six students with diverse fields of study or areas of expertise.
Can students from different universities be on the same team?
No. Teams must be comprised of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team. Multiple teams cannot have the same faculty advisor.
Can I participate on two separate teams?
No. You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be comprised of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical directions and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, there will be a period of time during which faculty advisors may request to remove or add members to the team, subject to approval by Amazon. See Official Rules for details.
Can we discuss our SocialBot with faculty or students who aren’t on our team?
Only team members may work on their SocialBots. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply?
Begin the application via YouNoodle.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process.
Do all team members have to apply?
Each team must have a team lead, who should submit only one application on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed. Teams will be selected by Amazon based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable evaluation of your proposal.
Prizes
What are the prizes for winning the competition?
Overall Performance Prize: For the three teams that build the SocialBot with the highest overall performance, the first-place team will win $250,000, the second-place team will win $50,000, and the third-place team will win $25,000. These prizes will be paid directly to the students on each winning team.


Scientific Invention and Innovation Prize: For the three teams that demonstrate the most scientific invention and innovation throughout the competition, the first-place team will win $250,000, the second-place team will win $50,000, and the third-place team will win $25,000. These prizes will be paid directly to the students on each winning team.



Grand Prize: If and only if the SocialBot of the team that wins the first-place Overall Performance Prize also achieves the grand challenge of conversing coherently and engagingly with humans for 20 minutes in at least two-thirds of its conversations at the finals event and achieves a 4.0 or higher composite score, that team’s university will be awarded a $1 million research grant.



See Official Rules for details.
Do we get a stipend and devices to participate in the Alexa Prize?
Up to ten teams will be sponsored to participate in the competition. Each sponsored team’s university will receive a $250,000 research grant to help fund the team’s participation.


The sponsorship includes Alexa-enabled devices, free AWS services to support the development of the team’s SocialBot, and support from the Alexa Prize team.
How can the grant be spent?
The grant is intended to support two full-time students for the duration of the competition and one month of the faculty advisor’s salary. No more than 35% of the research grant may be allocated to administrative fees. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
How will the prizes be distributed among a team?
Each Overall Performance Prize and the Scientific Invention and Innovation Prize will be distributed equally among the members of each winning team.
Timeline
What are the key milestones of the competition?
Teams must submit their applications by October 5, 2022. Teams selected to participate in the competition will be notified in October of November 2022. The competition will run from about November 2022 through August 2023. See Official Rules for details.

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, VA, Arlington
Customer Experience and Business Trends (CXBT) is looking for an Applied Scientist to join its team. CXBT's mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs, enabling natural, empathetic, and adaptive interactions. We leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. As part of CXBT, we have a vision to revolutionize how we understand, test, and optimize customer experiences at scale. Where traditional testing approaches fall short, we create AI-powered solutions that enable rapid experimentation, de-risk product launches, and generate actionable insights, -all before a single real customer is impacted. Be a part of our agentic initiative and shape how Amazon leverages artificial intelligence to run tests at scale and improve customer experiences. As an Applied Scientist, you will research state-of-the-art techniques in agent-based modeling, and lead scientific innovation by building foundational agentic simulation capabilities. If you are passionate about the intersection of AI and human behavior modeling, and want to fundamentally influence how Amazon tests and improves customer experiences, this role offers a great opportunity to make your mark. Key job responsibilities - Design and implement frameworks for creating representative, diverse agents that faithfully capture real-world characteristics - Use state-of-the-art techniques in user modeling and behavioral simulation to build robust agentic frameworks - Develop data simulation approaches that mimic real-world speech interactions. - Research and implement novel algorithms and modeling techniques. - Acquire and curate diverse datasets while ensuring user privacy. - Create robust evaluation metrics and test sets to assess language model performance. - Innovate in data representation and model training techniques. - Apply responsible AI practices throughout the development process. - Write clear, scientific documentation describing methodologies, solutions, and design choices. A day in the life Our team is dedicated to improving Amazon's products and services through evaluation of the end-to-end customer experience using both internal and external processes and technology. Our mission is to deeply understand our customers' experiences, challenge the status quo, and provide insights that drive innovation to improve that experience. Through our analysis and insights, we inform business decisions that directly impact customer experience as customers of new GenAI and LLM technologies. About the team Customer Experience and Business Trends (CXBT) is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers).
US, WA, Seattle
We are looking for a passionate Applied Scientist to contribute to the next generation of agentic AI applications for Amazon advertisers. In this role, you will support the development of agentic architectures, help build tools and datasets, and contribute to systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work alongside senior scientists at the forefront of applied AI, gaining hands-on experience with methods for fine-tuning, reinforcement learning, and preference optimization, while contributing to evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—contributing to customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will support the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role involves tackling well-scoped technical problems, while collaborating with engineers and product managers to bring solutions into production. Key Job Responsibilities - Contribute to building agents that guide advertisers in conversational and non-conversational experiences. - Implement model and agent optimization techniques, including supervised fine-tuning, instruction tuning, and preference optimization (e.g., DPO/IPO) under guidance from senior scientists. - Support dataset curation and tool development for MCP. - Contribute to evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Implement and iterate on agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Support prototyping of multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering, science, and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and apply findings to practical problems. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.