ucd-gunrock-team-650px.jpg
Location: Davis, CA, USA
Faculty advisor: Zhou Yu

Gunrock (2018)

Named for our university's mascot, Gunrock, our team is a group of students who all share a passion for improving everyday human experiences through artificial intelligence.

Our team consists of 14 graduate and undergraduate computer science and electrical and computer engineering students with diverse, international perspectives. Our fearless leader is Zhou Yu, an assistant professor of computer science who was recently recognized in Forbes' 2018 30 Under 30 in Science list for her research in developing algorithms that enable software to adapt to users. Using our combined knowledge and expertise in developing large-scale distributed computing platforms, sub-systems, machine learning and application software, our team can't wait to use Amazon's platform and user pool to tackle the real-world needs of the general public.

Chun-Yen C. - Team leader

Chun-Yen was a senior software engineer with 5 years hands-on experience specializing on developing a large-scale distributed platform and scalable machine learning systems, in telecommunication company HTC. He received his master's degree in Communication Engineering from National Taiwan University in 2012.

Chun-Yen is currently a first-year master student and a Graduate Student Researcher in computer science department at the University of California, Davis. His main focus is to build a data management framework for the general usage of visualization systems and architect a robust framework for the chatbot system.

Ashwin B.

I am a Masters in Computer Science student studying at the University of California, Davis. I am a passionate programmer having a strong Data Structures and Algorithms knowledge base. In this information age, my research interest lies in Data Science/ Data Analytics. Previously, I have worked with Dell-EMC where I applied the concept of Software Defined Networking to WAN to implement an SD-WAN solution which reduced the network reconfiguration speed by 60%. My hobbies include but are not limited to sketching, writing, reading, hiking, adventure sports and exploring the unknown. I love trying out new things and having new experiences.

Austin C.

I earned my Neuroscience B.S. at University of California, Los Angeles, with a focus on psychology and cognitive science. During my undergraduate, I started learning programming and mobile app development and switched my pursuit to computer science. I have also taken coursework in machine learning and neural networks on top of my major. I am pursuing my masters in computer science at UC Davis focusing on NLP, HCI and dialogue systems and researching under Prof. Zhou Yu. My current project is a dialogue-based movie recommendation system that generates recommendation using matrix factorization and collaborative filtering.

Weiming W.

N/A

Dian Y.

I am a first year PhD student working with Prof. Kenji Sagae on dialogue systems and machine translation at University of California, Davis. We are currently working on dialogue state tracking and parsing. Besides NLP, I am also interested in computer vision. Before this, I earned a B.S. in Computer Science and a B.S. in Finance at New York University. I was advised by Prof. Keith Ross working on reinforcement learning with a focus on natural language processing, as well as researching on computer networking.

Giritheja S.

I am a first year graduate student majoring in Computer Science. I graduated from the National Institute of Technology, Karnataka, India in 2017 with a major in Electrical and Electronics engineering. I have previously worked as a Summer Intern in the Cloud team of Fidelity Investments. I contribute to Open Source organizations involving Software Development. My recent course project involved exploring Deep Learning techniques to recover variable names from minified javascript files, I was intrigued by applications of Deep Learning and AI. I look forward to exploring it.

Kevin J.

I earned my Computer Science B.S and Computer Engineering B.S at the University of California, Santa Cruz. At the University of California, Davis I am currently working with Professor Yu Zhou for a Ph.D. in NLP and dialogue systems. My work in dialogue systems has led me to create a movie recommendation dialogue bot using collaborative filtering and matrix factorization.

Mingyang Z.

Previously, I worked with Professor Jason Corso on video activity segmentation and video classification research problem where I have experience of using sparse coding, CNN and RNN. I also did a humor classification project with Professor Rada Mihalcea to classify whether an image can pair with a humorous punchline to make good memes. Currently, I am working with Professor Yu Zhou at UC Davis for Ph.D, where I worked on the research problem of multimodality machine translation research. I implemented a sequence to sequence model and a visual semantic meaning embedding algorithm as the starting baseline model for this research.

Shreenath I.

I'm a first year Master's student at UC Davis with my areas of research being Software Engineering, Distributed Operating Systems and Machine Learning. I received my Bachelor's in Computer Science in 2015 from the University of Pune and I've worked with Fidelity National Information Services for two years as a Product Development Engineer. I have primarily worked on Python, Django, and Buildbots in a Continuous Integration environment to facilitate the build and release process. I have worked with recommendation systems and language processing before and I look forward to using my experience and building on it through this project.

Yi Mang (Terry) Y.

I am an undergraduate Computer Science major interested in artificial intelligence. Conversational artificial intelligence is enabling a natural and engaging way for people to interact with machines. It is an exciting time but creating a smart socialbot presents many challenges. For our team, I bring my experience in building full-stack software systems that integrate machine learning models. I also have research experience in applying deep learning to computer vision problems.

Antara B.

I'm a first year Master's student at UC Davis in computer science and my research interests lie in machine learning and natural language processing. I completed my undergraduate degree in computer science in 2017 from SRM University and I've worked on computer vision and NLP problems as part of my internship at Medyug Technologies.

Zhou Yu - Faculty advisor

Education: Ph.D in Language Technology Institute, School of Computer Science, Carnegie Mellon University, 2017

B.S. in Computer Science Department & B.A. in the Foreign Language Department with a linguistics focus in Zhejiang University, 2011

Professional Experience: Assistant Professor, University of California, Davis, 2017-present

Latest news

The latest updates, stories, and more about Alexa Prize.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
As an Applied Scientist on our Learning and Development team, you will play a critical role in driving the design, development, and delivery of learning programs and initiatives aimed at enhancing leadership and associate development within the organization. You will leverage your expertise in learning science, data analysis, and statistical model design to create impactful learning journey roadmap that align with organizational goals and priorities. Key job responsibilities 1) Research and Analysis: Conduct research on learning and development trends, theories, and best practices related to leadership and associate development. Analyze data to identify learning needs, performance gaps, and opportunities for improvement within the organization. Use data-driven insights to inform the design and implementation of learning interventions. 2) Program Design and Development: Collaborate with cross-functional teams to develop comprehensive learning programs focused on leadership development and associate growth. Design learning experiences using evidence-based instructional strategies, adult learning principles, and innovative technologies. Create engaging and interactive learning materials, including e-learning modules, instructor-led workshops, and multimedia resources. 3) Evaluation and Continuous Improvement: Develop evaluation frameworks to assess the effectiveness and impact of learning programs on leadership development and associate performance. Collect and analyze feedback from participants and stakeholders to identify strengths, areas for improvement, and future learning needs. Iterate on learning interventions based on evaluation results and feedback to continuously improve program outcomes. 4) Thought Leadership and Collaboration: Serve as a subject matter expert on learning science, instructional design, and leadership development within the organization. Collaborate with stakeholders across the company to align learning initiatives with strategic priorities and business objectives. Share knowledge and best practices with colleagues to foster a culture of continuous learning and development.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA We are seeking an Applied Scientist to join our AI Security team that leverages AI to make security mechanisms more effective and efficient. As an Applied Scientist, you will research and implement science methods, create software prototypes, and move prototypes into production systems. You will collaborate with applied scientists and software engineers to develop innovative AI-based technologies to solve some of our hardest security problems, supporting builder teams across Amazon and enabling Amazon businesses to strengthen their security posture more efficiently and effectively. Key job responsibilities • Design and implement accurate and scalable methods to solve some of our hardest security problems • Collaborate with applied scientists and software development engineers to drive technical design and implementation for AI-powered security services About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. We are looking for an experienced Applied Scientist to help architect state-of-the-art test infrastructure and lead the development of models and analysis tools to represent the ground truth about satellite test results in order to facilitate important business decisions. Our team is responsible for core infrastructure and tools that will serve as the backbone of automated satellite testing operations to enable rapid scaling of manufacturing processes. Key job responsibilities - Work with engineering, software and manufacturing teams to understand drivers, impacts, and key influences on Integrated Vehicle test results. - Lead the design, buildout and implementation of production systems that leverage multivariate analysis and make decisions in real time for Integrated Vehicle test results. - Drive actions at scale to optimize test methodology and drive increases to satellite reliability. - Automate feedback loops for test result analysis algorithms in production. - Leverage Amazon systems and tools to effectively work with, process and analyze large amounts of data. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life As a Project Kuiper Scientist you will own the architecture definition and development of data analysis tools to aid engineering and production teams in deciding flight-worthiness of each Kuiper satellite and historical traceability tools to enable simplified discovery and interpretation of past test data. You will work with multiple engineering, software and manufacturing teams across ground and space systems, to specify requirements, define data collection, interpretation strategies, data pipelines and implement multivariate data analysis and reporting tools for Integrated Vehicle tests. Your focus will be in optimizing the analysis of test results to enable Project Kuiper production plans. About the team The Automated Vehicle Testing Team is responsible for core infrastructure and tools that will serve as the backbone of automated satellite testing operations to enable rapid scaling of manufacturing processes.