SalsaBot

The SalsaBot team consists of talented students from Ohio State University.

Just as the name says, the team strives to build a robot that is great companion to everything and everyone. Equipped with state-of-the-art technologies from natural language processing, computer vision, and human-machine interaction, SalsaBot will assist humans to achieve more while also continuously improving itself along the way.

osu_salsabot_teamimage.jpg
Location: Columbus, Ohio
Faculty advisor: Yu Su

Chan Hee (Luke) S. — Team leader

Chan Hee is a 2nd year CS PhD student advised by Professor Yu Su in the Ohio State University. His current work focuses on developing a method for efficient and accurate completion of a long-horizon vision and language tasks. He is broadly interested in knowledge base construction/reasoning and vision-and-language navigation. Before his PhD, Chan Hee has graduated with a Bachelor of Computer Science from University of Notre Dame and has worked as a research intern in Johns Hopkins University HLTCOE.

Goonmeet B.

Goonmeet is a Computer Science and Engineering PhD student advised by Srinivasan Parthasarathy. She has been working on knowledge gap identification, detection, and resolution in Visual Question Answering (VQA) Systems and information extraction with publications at CVPR, topiCS, and PLOS One. She has interned at Nokia Bell Labs and National Library of Medicine.

Sean C.

Sean is a Ph.D. student in the Department of Computer Science and Engineering at OSU, working with Dr. Srinivasan Parthasarathy as my advisor. He completed his B.S. at the University of Arizona in May 2020 as a double major in Mathematics and Information Science and Technology. His current research focuses on machine learning applications for fluid mechanics, fair graph embedding learning, and knowledge gap detection, identification, and resolution for VQA models. His general research interests revolve around methods of incorporating prior information, knowledge, and constraints into machine learning architectures and AI systems.

Jihyung K.

Jiyhung is a Ph.D. student in the Department of Computer Science and Engineering at the Ohio State University, advised by Wei-Lun (Harry) Chao. Jiyhung is broadly interested in machine learning and its applications to Computer Vision and Natural Language Processing. Recently, Jiyhung has focused on Vision and Language, especially for Visual Question Answering, Zero-Shot Learning, and Vision Language Navigation.

Vardaan P.

Vardaan is a third year Ph.D. student in CSE at The Ohio State University. Vardaan's research focus is on knowledge base reasoning, graph representation learning and natural language processing. For this project, Vardaan will be working on knowledge bases, neuro-symbolic reasoning, and the state representation. Vardaan is also interested in scaling machine learning models to large-scale datasets.

Samuel S.

Sam is a first-year PhD student studying natural language processing under Dr Yu Su at the Ohio State University. He has experience interpreting pre-trained language models and semantic parsing, and extensive industry experience, with internships at GE Aviation, Microsoft and SpaceX.

Yu Su — Faculty advisor

Yu Su is an assistant professor in the Department of Computer Science and Engineering at the Ohio State University. Before coming to OSU, he was Senior Researcher at Microsoft Semantic Machines working on conversational AI. He got his PhD from University of California, Santa Barbara and his bachelor degree from Tsinghua University, both in Computer Science.

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team We're looking for outstanding scientists and engineers who combine superb technical, research and analytical capabilities with a demonstrated ability architect complex hardware, software, embedded, mobile and mission-critical systems to ensure they can be found compliant to DO-178C. This person must be comfortable working with a team of top-notch software, hardware and applied science Engineers. We’re looking for people who innovate and love solving hard problems. You will work hard, have fun, and of course, make history! Export License Control This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf. Key job responsibilities The manager of the High Fidelity Modeling group will lead a group of engineers and scientists that provide computational fluid dynamics modeling, as well as aerodynamic and other surrogate models used in flight simulation of the Prime Air drones.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
ZA, Cape Town
We are a new team in AWS' Kumo organisation - a combination of software engineers and AI/ML experts. Kumo is the software engineering organization that scales AWS’ support capabilities. Amazon’s mission is to be earth’s most customer-centric company and this also applies when it comes to helping our own Amazon employees with their everyday IT Support needs. Our team is innovating for the Amazonian, making the interaction with IT Support as smooth as possible. We achieve this through multiple mechanisms which eliminate root causes altogether, automate issue resolution or point customers towards the optimal troubleshooting steps for their situation. We deliver the support solutions plus the end-user content with instructions to help them self-serve. We employ machine learning solutions on multiple ends to understand our customer's behavior, predict customer's intent, deliver personalized content and automate issue resolution through chatbots. As an applied scientist on our team, you will help to build the next generation of case routing using artificial intelligence to optimize business metric targets addressing the business challenge of ensuring that the right case gets worked by the right agent within the right time limit whilst meeting the target business success metric. You will develop machine learning models and pipelines, harness and explain rich data at Amazon scale, and provide automated insights to improve case routing that impact millions of customers every day. You will be a pragmatic technical leader comfortable with ambiguity, capable of summarizing complex data and models through clear visual and written explanations. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Sales, Marketing and Global Services (SMGS) AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. Amazon knows that a diverse, inclusive culture empowers us all to deliver the best results for our customers. We celebrate diversity in our workforce and in the ways we work. As part of our inclusive culture, we offer accommodations during the interview and onboarding process. If you’d like to discuss your accommodation options, please contact your recruiter, who will partner you with the Applicant-Candidate Accommodation Team (ACAT). You may also contact ACAT directly by emailing acat-africa@amazon.com. We want all Amazonians to have the best possible Day 1 experience. If you’ve already completed the interview process, you can contact ACAT for accommodation support before you start to ensure all your needs are met Day 1. Key job responsibilities Deliver real world production systems at AWS scale. Work closely with the business to understand the problem space, identify the opportunities and formulate the problems. Use machine learning, data mining, statistical techniques, Generative AI and others to create actionable, meaningful, and scalable solutions for the business problems. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Analyze complex support case datasets and metrics to drive insight Design, build, and deploy effective and innovative ML solutions to optimize case routing Evaluate the proposed solutions via offline benchmark tests as well as online A/B tests in production. Drive collaborative research and creative problem solving across science and software engineering team Propose and validate hypothesis to deliver and direct our product road map Work with engineers to deliver low latency model predictions to production A day in the life AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
ZA, Cape Town
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. We are a new team in AWS' Kumo organisation - a combination of software engineers and AI/ML experts. Kumo is the software engineering organization that scales AWS’s support capabilities. Amazon’s mission is to be earth’s most customer-centric company and this also applies when it comes to helping our own Amazon employees with their everyday IT Support needs. Our team is innovating for the Amazonian, making the interaction with IT Support as smooth as possible. We achieve this through multiple mechanisms which eliminate root causes altogether, automate issue resolution or point customers towards the optimal troubleshooting steps for their situation. We deliver the support solutions plus the end-user content with instructions to help them self-serve. We employ machine learning solutions on multiple ends to understand our customer's behavior, predict customer's intent, deliver personalized content and automate issue resolution through chatbots. As an applied scientist on our team, you will help to build the next generation of case routing using artificial intelligence to optimize business metric targets addressing the business challenge of ensuring that the right case gets worked by the right agent within the right time limit whilst meeting the target business success metric. You will develop machine learning models and pipelines, harness and explain rich data at Amazon scale, and provide automated insights to improve case routing that impact millions of customers every day. You will be a pragmatic technical leader comfortable with ambiguity, capable of summarizing complex data and models through clear visual and written explanations. Amazon knows that a diverse, inclusive culture empowers us all to deliver the best results for our customers. We celebrate diversity in our workforce and in the ways we work. As part of our inclusive culture, we offer accommodations during the interview and onboarding process. If you’d like to discuss your accommodation options, please contact your recruiter, who will partner you with the Applicant-Candidate Accommodation Team (ACAT). You may also contact ACAT directly by emailing acat-africa@amazon.com. We want all Amazonians to have the best possible Day 1 experience. If you’ve already completed the interview process, you can contact ACAT for accommodation support before you start to ensure all your needs are met Day 1. Key job responsibilities - Analyze complex support case datasets and metrics to drive insight - Design, build, and deploy effective and innovative ML solutions to optimize case routing - Evaluate the proposed solutions via offline benchmark tests as well as online A/B tests in production. - Drive collaborative research and creative problem solving across science and engineering team - Propose and validate hypothesis to deliver and direct our product road map - Work with engineers to deliver low latency model predictions to production A day in the life AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IE, D, Dublin
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, NY, New York
The Automated Reasoning Group in AWS AI is looking for an Applied Scientist who will work on integrating automated reasoning and AI. You will work on capturing the semantics of various domains using mathematical logic, automating this apply it at scale. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. As an Applied Scientist in AWS AI, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: - Define and implement new applications of mathematical logic and logic solvers to develop accurate and scalable AI solutions to difficult problems. - Apply software engineering best practices to ensure a high standard of quality for all team deliverables - Work in an agile, startup-like development environment, where you are always working on the most important stuff - Deliver high-quality scientific artifacts - Work with the team to define new interfaces that lower the barrier of adoption for automated reasoning solvers - Work with the team to help drive business decisions Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Inclusion and Diversity. Our team is diverse! We drive towards an inclusive culture and work environment. We are intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Team members are active in Amazon’s 10+ affinity groups, sometimes known as employee resource groups, which bring employees together across businesses and locations around the world. These range from groups such as the Black Employee Network, Latinos at Amazon, Indigenous at Amazon, Families at Amazon, Amazon Women and Engineering, LGBTQ+, Warriors at Amazon (Military), Amazon People With Disabilities, and more. Key job responsibilities Work closely with internal and external users on defining and extending application domains for integrated use of automated reasoning and AI. Automate the generation of semantic models in mathematical logic. About the team The automated reasoning group in AI is a diverse group of scientists and engineers innovating in this exciting new area. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
We are seeking an Applied Scientist to develop innovative perception and machine learning solutions for robot workcells in Amazon Fulfillment centers. In this role, you will leverage advanced sensor technologies to develop and implement state-of-the art ML models to for scene understanding and objection localization. Your solutions will allow Amazon to increase productivity and efficiency while prioritizing employee safety. Key job responsibilities - Design and implement advanced machine learning models for perception tasks such as object detection and scene understanding - Optimize and deploy the ML models on edge devices - Build and test prototype robotic workcell setups to validate the performance of the solution - Work with cross-functional teams to provide inputs and recommendations for the optimal sensor suite to enable a robust solution - Collaborate with Amazon's robotics engineering and operations teams to understand their requirements and develop tailored solutions - Document the architecture, performance, and validation of the final system A day in the life Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!