3Q: Making silicon-vacancy centers practical for quantum networking

New method enables entanglement between vacancy centers tuned to different wavelengths of light.

Quantum networking is a technology that promises to enable tamper-proof communication over optical networks. Synthetic-diamond chips with so-called silicon-vacancy centers are a promising technology for quantum networking because they’re natural light emitters, and they’re small, solid state, and relatively easy to manufacture at scale. But they’ve had one severe drawback, which is that they tend to emit light at a range of different frequencies, which makes exchanging quantum information difficult.

Last year, members of Amazon’s AWS Center for Quantum Computing, together with colleagues at Harvard University, the University of Hamburg, the Hamburg Centre for Ultrafast Imaging, and the Hebrew University of Jerusalem, demonstrated a technique that promises to overcome that drawback. They will present their results in a forthcoming paper in Physical Review Letters titled “Optical entanglement of distinguishable quantum emitters”.

The first author on the paper, David Levonian, a graduate student at Harvard and a quantum research scientist at Amazon, answered three questions about the research for Amazon Science.

Q: What is quantum networking?

David Levonian: A quantum network is a technology that allows you to send quantum bits over fiber optics using single photons — single particles of light. The original interest in it is that by sending these quantum bits between users, you can generate cryptographic keys in a way that's secure. 

As you're able to get higher bandwidth and throughput through these things, you can do really cool stuff. Say Amazon, for example, has a quantum computer, and you don't have one, and you'd like to run computations on Amazon’s, but you don't want to reveal what data you're actually using or what programs you're running. 

It turns out that if your computer can connect to a quantum network, without much special hardware on your side, you can actually send programs and data and have Amazon execute them and then come back to you with a guarantee that nobody looked at any of the stuff that you were doing.

People are trying to build these networks in a variety of ways. What we work on specifically is a hardware implementation that's built on these little chips of diamond. The diamond is made of a bunch of carbon atoms. Pluck out two of those and add a silicon atom. Now there are two holes in the crystal, and the silicon sits in between the two holes. It brings an extra electron, and that electron can absorb light, and it can also store quantum information.

You can use these silicon-vacancy centers as storage registers — people call them quantum memories — to catch light and route it and do quantum operations on it. And you need that quantum memory to build the quantum network for these security applications. People also use trapped atoms or ions and other stuff, but for those you need really big machines. Our system is a little chip, which is pretty cool. 

Q: What problem does your new research solve?

DL: One of the current problems with silicon-vacancy centers is that they're not as uniform as other quantum network hardware that people use. If you have a big network of these things, you want them to communicate between each other with light. And one of the things about silicon-vacancy centers — and actually most of the defect centers in crystals — is that one silicon atom doesn't always emit the same wavelength of light that another defect can receive, so you have trouble matching up your different bits. And that's been a big barrier to actually building these things.

What we came up with is a way of making silicon vacancies that emit light at different wavelengths talk to each other. It’s based on a thought experiment from the ’90s called a Elitzur–Vaidman bomb tester. The motivating idea is that there might be a bomb somewhere, and it's so sensitive that even if you hit it with a single particle of light, it's going to go off. So you want to test whether or not it's there without hitting it with any light at all. 

It turns out there's a quantum-mechanical way to check whether there's a thing blocking light at a position without having any light interact with it, which is pretty unbelievable. But I can give you an idea of how it works. 

There's this device for light called an interferometer. You take a laser beam, you split it into two paths, and then you recombine it at a later point. And where it recombines, you put a beam splitter — a half-transparent mirror that sometimes lets light through and sometimes reflects it 90 degrees. 

So there are two directions light can come out. But if the two paths are the same length, then when the beams get to the beam splitter, they cancel each other out in one direction, and they only come out in the other direction.

Beam splitter interference.png

The weird quantum-mechanical part about this is, even if my laser is only sending a single photon at a time — so there's just one particle of light at a time — those particles still behave the same way. They can split and then interfere with themselves, even though there's only one photon at a time.

So if you send a single photon in, and that photon comes out the port where it wasn't supposed to, I know that one of the paths of the interferometer is blocked. I'm able to detect that there was something blocking one of the paths without having my photon actually run into it. 

SiV experimental setup.png
In the researchers' variation of the Elitzur–Vaidman bomb tester, if a photon reaches the detector, it conveys information about the quantum state of one silicon-vacancy qubit (SiV B), even though it interacted only with the other qubit (SiV A).

We basically we do that, except instead of having the light take two different paths, we split it in frequency. So you can build an interferometer where instead of traveling two paths, the light turns into two different frequencies, and then it gets recombined at a central one. 

Q: How does that help you do secure communication?

DL: There are two vacancy centers, and based on their state they're going to be blocking light or letting light through. You send light in at those two frequencies, and then you combine it. 

If both vacancies are letting light through, then the two paths interfere, and no light comes out at the combined frequency. And if both vacancies are blocking light, no light comes out at the combined frequency. But if one is letting light through, and one is blocking it, then light does come out at that central frequency. 

So if you get light at that combined frequency, you know one was blocking and one wasn't blocking — but you don't know which one is which. And that process generates quantum entanglement between the two vacancies. You can now use one to talk to you and another one to talk to me.

For single quantum bits, if you measure them, you usually change them. So if there's some eavesdropper, they're going to change the bits that I'm sending to you. You can say, ‘Hey, here's the statistics on my information, here’s the statistics on your information.’ If the party in between is adversarial — if they're breaking the rules and just looking at our information and then computing stuff — they're not going to be able to push this statistic above a certain threshold. So as long as that number is higher than the threshold, we know they're not cheating, and our information is secure.

Research areas

Related content

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, NY, New York
This is an exciting opportunity to shape the future of AI and make a real impact on our customers' generative AI journeys. Join the Generative AI Innovation Center to help customers shape the future of Responsible Generative AI while prioritizing security, privacy, and ethical AI practices. In this role, you will play a pivotal role in guiding AWS customers on the responsible and secure adoption of Generative AI, with a focus on Amazon Bedrock, our fully managed service for building generative AI applications. AWS Generative AI Innovation Center is looking for a Generative AI Data Scientist, who will guide customers on operationalizing Generative AI workloads with appropriate guardrails and responsible AI best practices, including techniques for mitigating bias, ensuring fairness, vulnerability assessments, red teaming, model evaluations, hallucinations, grounding model responses, and maintaining transparency in generative AI models. You'll evangelize Responsible AI (RAI), help customers shape RAI policies, develop technical assets to support RAI policies including demonstrating guardrails for content filtering, redacting sensitive data, blocking inappropriate topics, and implementing customer-specific AI safety policies. The assets you develop, will equip AWS teams, partners, and customers to responsibly operationalize generative AI, from PoCs to production workloads. You will engage with policy makers, customers, AWS product owners to influence product direction and help our customers tap into new markets by utilizing GenAI along with AWS Services. As part of the Generative AI Worldwide Specialist organization, Innovation Center, you will interact with AI/ML scientists and engineers, develop white papers, blogs, reference implementations, and presentations to enable customers and partners to fully leverage Generative AI services on Amazon Web Services. You may also create enablement materials for the broader technical field population, to help them understand RAI and how to integrate AWS services into customer architectures. You must have deep understanding of Generative AI models, including their strengths, limitations, and potential risks. You should have expertise in Responsible AI practices, such as bias mitigation, fairness evaluation, and ethical AI principles. In addition you should have hands on experience with AI security best practices, including vulnerability assessments, red teaming, and fine grained data access controls. Candidates must have great communication skills and be very technical, with the ability to impress Amazon Web Services customers at any level, from executive to developer. Previous experience with Amazon Web Services is desired but not required, provided you have experience building large scale solutions. You will get the opportunity to work directly with senior ML engineers and Data Scientists at customers, partners and Amazon Web Services service teams, influencing their roadmaps and driving innovation. Travel up to 40% may be possible. Key job responsibilities - Guide customers on Responsible AI and Generative AI Security: Act as a trusted advisor to our customers, helping them navigate the complex world of Generative AI and ensure they are using it responsibly and securely - Operationalize generative AI workloads: Support customers in taking their generative AI projects from proof-of-concept to production, implementing appropriate guardrails and best practices - Demonstrate Generative AI Risks and Mitigations: Develop technical assets and content to educate customers on the risks of generative AI, including bias, offensive content, cyber threats, prompt hacking, and hallucinations - Collaborate with GenAI Product/Engineering and Customer-Facing Builder Teams: Work closely with the Amazon Bedrock product and engineering teams and customer-facing builders to launch new services, support beta customers, and develop technical assets - Thought Leadership and External Representation: Serve as a thought leader in the Generative AI space, representing AWS at industry events and conferences, such as AWS re:Invent - Develop technical content, workshops, and thought leadership to enable the broader technical community, including Solution Architects, Data Scientists, and Technical Field Community members About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. As a Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams.
US, VA, Arlington
Are you passionate about programming languages, applying formal verification, program analysis, constraint-solving, and/or theorem proving to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Technical Responsibilities: - Interact with various teams to develop an understanding of their security and safety requirements. - Apply the acquired knowledge to build tools find problems, or show the absence of security/safety problems. - Implement these tools through the use of SAT, SMT, and various concepts from programming languages, theorem proving, formal verification and constraint solving. - Perform analysis of the customer systems using tools developed in-house or externally provided - Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. Leadership Responsibilities: - Can present and defend company-wide technical decisions to the internal technical community and represent the company effectively at technical conferences. - Functional thought leader, sought after for key tech decisions. Can successfully sell ideas to an executive level decision maker. - Mentors and trains the research scientist community on complex technical issues. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. Whether its Identity features such as access management and sign on, cryptography, console, builder & developer tools, and even projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Key job responsibilities Technical Responsibilities: - Interact with various teams to develop an understanding of their security and safety requirements. - Apply the acquired knowledge to build tools find problems, or show the absence of security/safety problems. - Implement these tools through the use of SAT, SMT, BDDs, and various concepts from programming languages, theorem proving, formal verification and constraint solving. - Perform analysis of the customer systems using tools developed in-house or externally provided - Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. Leadership Responsibilities: - Can present and defend company-wide technical decisions to the internal technical community and represent the company effectively at technical conferences. - Functional thought leader, sought after for key tech decisions. Can successfully sell ideas to an executive level decision maker. - Mentors and trains the research scientist community on complex technical issues. A day in the life You will be working on cutting edge technology related to formal methods, automated reasoning, automated testing, and adjacent areas. You will work with fellow applied scientists to solve challenging problems that provide value to customers by improving the quality of software. You will have an opportunity to publish your work. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About the team The Automated Reasoning in Identity (ARI) team is growing fast. It works on applying automated reasoning techniques to services within AWS's Identity organization, building on initial successes of the Zelkova and Access Analyzer projects. The reach of AR within Identity is growing, with more scientists joining all the time.