A gentle introduction to automated reasoning

Meet Amazon Science’s newest research area.

This week, Amazon Science added automated reasoning to its list of research areas. We made this change because of the impact that automated reasoning is having here at Amazon. For example, Amazon Web Services’ customers now have direct access to automated-reasoning-based features such as IAM Access Analyzer, S3 Block Public Access, or VPC Reachability Analyzer. We also see Amazon development teams integrating automated-reasoning tools into their development processes, raising the bar on the security, durability, availability, and quality of our products.

The goal of this article is to provide a gentle introduction to automated reasoning for the industry professional who knows nothing about the area but is curious to learn more. All you will need to make sense of this article is to be able to read a few small C and Python code fragments. I will refer to a few specialist concepts along the way, but only with the goal of introducing them in an informal manner. I close with links to some of our favorite publicly available tools, videos, books, and articles for those looking to go more in-depth.

Let’s start with a simple example. Consider the following C function:

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

Take a few moments to answer the question “Could f ever return false?” This is not a trick question: I’ve purposefully used a simple example to make a point.

To check the answer with exhaustive testing, we could try executing the following doubly nested test loop, which calls f on all possible pairs of values of the type unsigned int:

#include<stdio.h>
#include<stdbool.h>
#include<limits.h>

bool f(unsigned int x, unsigned int y) {
   return (x+y == y+x);
}

void main() {
   for (unsigned int x=0;1;x++) {
      for (unsigned int y=0;1;y++) {
         if (!f(x,y)) printf("Error!\n");
         if (y==UINT_MAX) break;
      }
      if (x==UINT_MAX) break;
   }
}

Unfortunately, even on modern hardware, this doubly nested loop will run for a very long time. I compiled it and ran it on a 2.6 GHz Intel processor for over 48 hours before giving up.

Why does testing take so long? Because UINT_MAX is typically 4,294,967,295, there are 18,446,744,065,119,617,025 separate f calls to consider. On my 2.6 GHz machine, the compiled test loop called f approximately 430 million times a second. But to test all 18 quintillion cases at this performance, we would need over 1,360 years.

When we show the above code to industry professionals, they almost immediately work out that f can't return false as long as the underlying compiler/interpreter and hardware are correct. How do they do that? They reason about it. They remember from their school days that x + y can be rewritten as y + x and conclude that f always returns true.

Re:Invent 2021 keynote address by Peter DeSantis, senior vice president for utility computing at Amazon Web Services
Skip to 15:49 for a discussion of Amazon Web Services' work on automated reasoning.

An automated reasoning tool does this work for us: it attempts to answer questions about a program (or a logic formula) by using known techniques from mathematics. In this case, the tool would use algebra to deduce that x + y == y + x can be replaced with the simple expression true.

Automated-reasoning tools can be incredibly fast, even when the domains are infinite (e.g., unbounded mathematical integers rather than finite C ints). Unfortunately, the tools may answer “Don’t know” in some instances. We'll see a famous example of that below.

The science of automated reasoning is essentially focused on driving the frequency of these “Don’t know” answers down as far as possible: the less often the tools report "Don't know" (or time out while trying), the more useful they are.

Today’s tools are able to give answers for programs and queries where yesterday’s tools could not. Tomorrow’s tools will be even more powerful. We are seeing rapid progress in this field, which is why at Amazon, we are increasingly getting so much value from it. In fact, we see automated reasoning forming its own Amazon-style virtuous cycle, where more input problems to our tools drive improvements to the tools, which encourages more use of the tools.

A slightly more complex example. Now that we know the rough outlines of what automated reasoning is, the next small example gives a slightly more realistic taste of the sort of complexity that the tools are managing for us.

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

Or, alternatively, consider a similar Python program over unbounded integers:

def g(x, y):
   assert isinstance(x, int) and isinstance(y, int)
   if y > 0:
      while x > y:
         x = x - y

Try to answer this question: “Does g always eventually return control back to its caller?”

When we show this program to industry professionals, they usually figure out the right answer quickly. A few, especially those who are aware of results in theoretical computer science, sometimes mistakenly think that we can't answer this question, with the rationale “This is an example of the halting problem, which has been proved insoluble”. In fact, we can reason about the halting behavior for specific programs, including this one. We’ll talk more about that later.

Here’s the reasoning that most industry professionals use when looking at this problem:

  1. In the case where y is not positive, execution jumps to the end of the function g. That’s the easy case.
  2. If, in every iteration of the loop, the value of the variable x decreases, then eventually, the loop condition x > y will fail, and the end of g will be reached.
  3. The value of x always decreases only if y is always positive, because only then does the update to x (i.e., x = x - y) decrease x. But y’s positivity is established by the conditional expression, so x always decreases.

The experienced programmer will usually worry about underflow in the x = x - y command of the C program but will then notice that x > y before the update to x and thus cannot underflow.

If you carried out the three steps above yourself, you now have a very intuitive view of the type of thinking an automated-reasoning tool is performing on our behalf when reasoning about a computer program. There are many nitty-gritty details that the tools have to face (e.g., heaps, stacks, strings, pointer arithmetic, recursion, concurrency, callbacks, etc.), but there’s also decades of research papers on techniques for handling these and other topics, along with various practical tools that put these ideas to work.

Policy-code.gif
Automated reasoning can be applied to both policies (top) and code (bottom). In both cases, an essential step is reasoning about what's always true.

The main takeaway is that automated-reasoning tools are usually working through the three steps above on our behalf: Item 1 is reasoning about the program’s control structure. Item 2 is reasoning about what is eventually true within the program. Item 3 is reasoning about what is always true in the program.

Note that configuration artifacts such as AWS resource policies, VPC network descriptions, or even makefiles can be thought of as code. This viewpoint allows us to use the same techniques we use to reason about C or Python code to answer questions about the interpretation of configurations. It’s this insight that gives us tools like IAM Access Analyzer or VPC Reachability Analyzer.

An end to testing?

As we saw above when looking at f and g, automated reasoning can be dramatically faster than exhaustive testing. With tools available today, we can show properties of f or g in milliseconds, rather than waiting lifetimes with exhaustive testing.

Can we throw away our testing tools now and just move to automated reasoning? Not quite. Yes, we can dramatically reduce our dependency on testing, but we will not be completely eliminating it any time soon, if ever. Consider our first example:

bool f(unsigned int x, unsigned int y) {
   return (x + y == y + x);
}

Recall the worry that a buggy compiler or microprocessor could in fact cause an executable program constructed from this source code to return false. We might also need to worry about the language runtime. For example, the C math library or the Python garbage collector might have bugs that cause a program to misbehave.

What’s interesting about testing, and something we often forget, is that it’s doing much more than just telling us about the C or Python source code. It’s also testing the compiler, the runtime, the interpreter, the microprocessor, etc. A test failure could be rooted in any of those tools in the stack.

Automated reasoning, in contrast, is usually applied to just one layer of that stack — the source code itself, or sometimes the compiler or the microprocessor. What we find so valuable about reasoning is it allows us to clearly define both what we do know and what we do not know about the layer under inspection.

Furthermore, the models of the surrounding environment (e.g., the compiler or the procedure calling our procedure) used by the automated-reasoning tool make our assumptions very precise. Separating the layers of the computational stack helps make better use of our time, energy, and money and the capabilities of the tools today and tomorrow.

Unfortunately, we will almost always need to make assumptions about something when using automated reasoning — for example, the principles of physics that govern our silicon chips. Thus, testing will never be fully replaced. We will want to perform end-to-end testing to try and validate our assumptions as best we can.

An impossible program

I previously mentioned that automated-reasoning tools sometimes return “Don’t know” rather than “yes” or “no”. They also sometimes run forever (or time out), thus never returning an answer. Let’s look at the famous "halting problem" program, in which we know tools cannot return “yes” or “no”.

Imagine that we have an automated-reasoning API, called terminates, that returns “yes” if a C function always terminates or “no” when the function could execute forever. As an example, we could build such an API using the tool described here (shameless self-promotion of author’s previous work). To get the idea of what a termination tool can do for us, consider two basic C functions, g (from above),

void g(int x, int y) {
   if (y > 0)
      while (x > y)
         x = x - y;
}

and g2:

void g2(int x, int y) {
   while (x > y)
      x = x - y;
}

For the reasons we have already discussed, the function g always returns control back to its caller, so terminates(g) should return true. Meanwhile, terminates(g2) should return false because, for example, g2(5, 0) will never terminate.

Now comes the difficult function. Consider h:

void h() {
   if terminates(h) while(1){}
}

Notice that it's recursive. What’s the right answer for terminates(h)? The answer cannot be "yes". It also cannot be "no". Why?

Imagine that terminates(h) were to return "yes". If you read the code of h, you’ll see that in this case, the function does not terminate because of the conditional statement in the code of h that will execute the infinite loop while(1){}. Thus, in this case, the terminates(h) answer would be wrong, because h is defined recursively, calling terminates on itself.

Similarly, if terminates(h) were to return "no", then h would in fact terminate and return control to its caller, because the if case of the conditional statement is not met, and there is no else branch. Again, the answer would be wrong. This is why the “Don’t know” answer is actually unavoidable in this case.

The program h is a variation of examples given in Turing’s famous 1936 paper on decidability and Gödel’s incompleteness theorems from 1931. These papers tell us that problems like the halting problem cannot be “solved”, if bysolved” we mean that the solution procedure itself always terminates and answers either “yes” or “no” but never “Don’t know”. But that is not the definition of “solved” that many of us have in mind. For many of us, a tool that sometimes times out or occasionally returns “Don’t know” but, when it gives an answer, always gives the right answer is good enough.

This problem is analogous to airline travel: we know it’s not 100% safe, because crashes have happened in the past, and we are sure that they will happen in the future. But when you land safely, you know it worked that time. The goal of the airline industry is to reduce failure as much as possible, even though it’s in principle unavoidable.

To put that in the context of automated reasoning: for some programs, like h, we can never improve the tool enough to replace the "Don't know" answer. But there are many other cases where today's tools answer "Don't know", but future tools may be able to answer "yes" or "no". The modern scientific challenge for automated-reasoning subject-matter experts is to get the practical tools to return “yes” or “no” as often as possible. As an example of current work, check out CMU professor and Amazon scholar Marijn Heule and his quest to solve the Collatz termination problem.

Another thing to keep in mind is that automated-reasoning tools are regularly trying to solve “intractable” problems, e.g., problems in the NP complexity class. Here, the same thinking applies that we saw in the case of the halting problem: automated-reasoning tools have powerful heuristics that often work around the intractability problem for specific cases, but those heuristics can (and sometimes do) fail, resulting in “Don’t know” answers or impractically long execution time. The science is to improve the heuristics to minimize that problem.

Nomenclature

A host of names are used in the scientific literature to describe interrelated topics, of which automated reasoning is just one. Here’s a quick glossary:

  • logic is a formal and mechanical system for defining what is true and untrue. Examples: propositional logic or first-order logic.
  • theorem is a true statement in logic. Example: the four-color theorem.
  • proof is a valid argument in logic of a theorem. Example: Gonthier's proof of the four-color theorem
  • mechanical theorem prover is a semi-automated-reasoning tool that checks a machine-readable expression of a proof often written down by a human. These tools often require human guidance. Example: HOL-light, from Amazon researcher John Harrison
  • Formal verification is the use of theorem proving when applied to models of computer systems to prove desired properties of the systems. Example: the CompCert verified C compiler
  • Formal methods is the broadest term, meaning simply the use of logic to reason formally about models of systems. 
  • Automated reasoning focuses on the automation of formal methods. 
  • semi-automated-reasoning tool is one that requires hints from the user but still finds valid proofs in logic. 

As you can see, we have a choice of monikers when working in this space. At Amazon, we’ve chosen to use automated reasoning, as we think it best captures our ambition for automation and scale. In practice, some of our internal teams use both automated and semi-automated reasoning tools, because the scientists we've hired can often get semi-automated reasoning tools to succeed where the heuristics in fully automated reasoning might fail. For our externally facing customer features, we currently use only fully automated approaches.

Next steps

In this essay, I’ve introduced the idea of automated reasoning, with the smallest of toy programs. I haven’t described how to handle realistic programs, with heap or concurrency. In fact, there are a wide variety of automated-reasoning tools and techniques, solving problems in all kinds of different domains, some of them quite narrow. To describe them all and the many branches and sub-disciplines of the field (e.g. “SMT solving”, “higher-order logic theorem proving”, “separation logic”) would take thousands of blogs posts and books.

Automated reasoning goes back to the early inventors of computers. And logic itself (which automated reasoning attempts to solve) is thousands of years old. In order to keep this post brief, I’ll stop here and suggest further reading. Note that it’s very easy to get lost in the weeds reading depth-first into this area, and you could emerge more confused than when you started. I encourage you to use a bounded depth-first search approach, looking sequentially at a wide variety of tools and techniques in only some detail and then moving on, rather than learning only one aspect deeply.

Suggested books:

International conferences/workshops:

Tool competitions:

Some tools:

Interviews of Amazon staff about their use of automated reasoning:

AWS Lectures aimed at customers and industry:

AWS talks aimed at the automated-reasoning science community:

AWS blog posts and informational videos:

Some course notes by Amazon Scholars who are also university professors:

A fun deep track:

Some algorithms found in the automated theorem provers we use today date as far back as 1959, when Hao Wang used automated reasoning to prove the theorems from Principia Mathematica.

Research areas

Related content

US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs. - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. About the team It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experiences of Amazon customers worldwide. Your work will directly impact our customers in the form of products and services that make use of language and multimodal technology!
US, WA, Seattle
Are you excited about developing foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for collaborative scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking an experienced and senior Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.
US, WA, Seattle
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life We thrive on solving challenging problems to innovate for our customers. By pushing the boundaries of technology, we create unparalleled experiences that enable us to rapidly adapt in a dynamic environment. Our decisions are guided by data, and we collaborate with engineering, science, and product teams to foster an innovative learning environment. If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits Summary: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team Join our team of scientists and engineers who develop and deploy LLM-based Conversational AI systems to enhance Amazon's customer service experience and effectiveness. We work on innovative solutions that help customers solve their issues and get their questions answered efficiently, and associate-facing products that support our customer service associate workforce.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is critical to the algorithms that power the recommendation, search, and ranking systems. It's also critical to making decisions, especially working on systems that are themselves data-driven. As a Senior Data Scientist on the CDML team, you'll be responsible for helping drive improvements to the machine learning systems as well as analytics to drive decision-making. While there is a team of Applied Scientists building and shipping the algorithms themselves, data science can help improve these systems directly. In this role, you can identify and build new signals to input into the models. We're also working on the value model that the algorithm optimizes, and your input will be critical to understanding the tradeoffs and balancing multiple objectives in a scientific way. We also still have big unanswered analytics questions to solve. How often do viewers just want to get to the content they already know they want to watch, and when are they open to exploring new channels? These are the sorts of questions you'll be tackling. You Will - Inform product strategies by defining and updating core metrics for each initiative - Estimate the opportunity sizing of new features the team could take on - Identify and build new signals to incorporate into the algorithms driving recommendations, search, and feed ranking at Twitch - Identify metric tradeoff ratios that help inform value model choices, long-term impact from early-growth-funnel users, and other product decisions - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Design A/B experiments to drive product direction with iterative innovation and measurement - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Seattle
The People eXperience and Technology (PXT) Central Science Team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms, process improvements and products, which simultaneously improve Amazon and the lives, wellbeing, and the value of work of Amazonians. We are an interdisciplinary team which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We invest in innovation and rapid prototyping of scientific models, AI/ML technologies and software solutions to accelerate informed, accurate, and reliable decision backed by science and data. As a research scientist you will you will design and carry out surveys to address business questions; analyze survey and other forms of data with regression models; perform weighting and multiple imputation to reduce bias due to nonresponse. You will conduct methodological and statistical research to understand the quality of survey data. You will work with economists, engineers, and computer scientists to select samples, draft and test survey questions, calculate nonresponse adjusted weights, and estimate regression models on large scale data. You will evaluate, diagnose, understand, and surface drivers and moderators for key research streams, including (but are not limited to) attrition, engagement, productivity, inclusion, and Amazon culture. Key job responsibilities Help to design and execute a scalable global content development and validation strategy to drive more effective decisions and improve the employee experience across all of Amazon Conduct psychometric and econometric analyses to evaluate integrity and practical application of survey questions and data Identify and execute research streams to evaluate how to mitigate or remove sources of measurement error Partner closely and drive effective collaborations across multi-disciplinary research and product teams Manage full life cycle of large-scale research programs (Develop strategy, gather requirements, manage and execute)
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team builds services and tools through Machine Learning techniques to implement our policies to detect and mitigate sensitive content in across Alexa. We are looking for a passionate, talented, and inventive Data Scientist-II to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems, requiring good learning and generative models knowledge. You will be working with a team of exceptional Data Scientists working in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with other data scientists while understanding the role data plays in developing data sets and exemplars that meet customer needs. You will analyze and automate processes for collecting and annotating LLM inputs and outputs to assess data quality and measurement. You will apply state-of-the-art Generative AI techniques to analyze how well our data represents human language and run experiments to gauge downstream interactions. You will work collaboratively with other data scientists and applied scientists to design and implement principled strategies for data optimization. Key job responsibilities A Data Scientist-II should have a reasonably good understanding of NLP models (e.g. LSTM, LLMs, other transformer based models) or CV models (e.g. CNN, AlexNet, ResNet, GANs, ViT) and know of ways to improve their performance using data. You leverage your technical expertise in improving and extending existing models. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing in your career, this may be the place for you. A day in the life You will be working with a group of talented scientists on running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation for worldwide coverage. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, model development, and solution implementation. You will work with other scientists, collaborating and contributing to extending and improving solutions for the team. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop state-of-the-art recommendations systems, Conversational AI agents, and personalization capabilities within AWS Marketplace. This role will revolutionize discovery of solutions that accelerate customer cloud migrations for our customers, bringing personalization to AWS customers. The ideal candidate is comfortable leading production level recommendations strategies, implementing agent based conversationalAI experience, and mentoring other scientists on the team. You able to evaluate feasibility of scientific approaches and influence business leaders to develop the best experience for our customers. You thrive in a collaborative environment, where mentorship, learning, and teamwork is critical. Key job responsibilities - Work with customers, product managers, scientists, and engineers to deliver production level recommendation experiences - Ability to write production level code and support requirements for MLOps/LLMOps - Mentor Scientists on the team, and guide scientific approach across the organization About the team The AWS Marketplace & Partner Services Science team supports science models and recommendations that are deployed directly to AWS Customers (via AWS Marketplace), to our partners (via Partner Central), and to our internal AWS Sellers. Our mission is to accelerate cloud migrations and modernizations, supporting AWS customers to innovate, and the growth of our AWS Partners.