A quick guide to Amazon’s 50-plus papers at EMNLP 2024

Large language models predominate, both as a research subject themselves and as tools for researching topics of particular interest to Amazon, such as speech, recommendations, and information retrieval.

Large language models (LLMs) have come to dominate the field of natural-language processing, so it’s no surprise that they also dominate the research that Amazon scientists are presenting at this year’s Conference on Empirical Methods in Natural-Language Processing (EMNLP). LLM training is the topic with the greatest number of Amazon papers, followed closely by strategies for mitigating misinformation in LLMs’ outputs — including but not limited to hallucinations. At the same time, a number of papers apply LLMs to topics of traditional interest at Amazon, such as speech, recommender systems, and information retrieval. (Papers marked with asterisks were accepted to Findings of EMNLP.)

AI agents

MARCO: Multi-agent real-time chat orchestration
Anubhav Shrimal, Shervin Malmasi, Kriti Biswas, Swarnalatha Raghuraman, Anish Nediyanchath, Yi Zhang, Promod Yenigalla

Code generation

CodeFort: Robust training for code generation models
Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, Anoop Deoras

Socratic human feedback (SoHF): Expert steering strategies for LLM code generation
Subramanian Chidambaram, Erran Li, Min Bai, Xiaopeng LI, Kaixiang Lin, Xiong Zhou, Alex C. Williams

Structured object language modeling (SoLM): Native structured objects generation conforming to complex schemas with self-supervised denoising
Amir Tavanaei, Kee Kiat Koo, Hayreddin Ceker, Shaobai Jiang, Qi Li, Julien Han, Karim Bouyarmane

Contrastive decoding

Explaining and improving contrastive decoding by extrapolating the probabilities of a huge and hypothetical LM
Haw-Shiuan Chang, Nanyun Peng, Mohit Bansal, Anil Ramakrishna, Tagyoung Chung

Explaining and improving contrastive decoding by extrapolating the probabilities of a huge and hypothetical LM.png
Given a simple question with clues, contrastive decoding could have an “obvious blindness” (e.g., assigning higher probability to an uncommon answer, such as "invertebrate", than to the most obvious answer, "bees"). In contrast, the asymptotic probability decoding proposed in "Explaining and improving contrastive decoding by extrapolating the probabilities of a huge and hypothetical LM" correctly assigns the highest probability to "bees" by leveraging the probabilities from multiple LMs of different sizes.

Data integration

ASTRA: Automatic schema matching using machine translation
Tarang Chugh, Deepak Zambre

Learning from natural language explanations for generalizable entity matching
Somin Wadhwa, Adit Krishnan, Runhui Wang, Byron C. Wallace, Chris (Luyang) Kong

Pretraining and finetuning language models on geospatial networks for accurate address matching
Saket Maheshwary, Arpan Paul, Saurabh Sohoney

Retrieval augmented spelling correction for e-commerce applications
Xuan Guo, Rohit Patki, Dante Everaert, Christopher Potts

Dataset distillation

Textual dataset distillation via language model embedding
Yefan Tao, Chris (Luyang) Kong, Andrey Kan, Laurent Callot

Textual dataset distillation via language model embedding: DaLLME.png
The DaLLME framework proposed in "Textual dataset distillation via language model embedding" begins by using a language model to transform raw textual data into embedding vectors. A set of distilled vectors is then derived in the embedding space, through a process designed to encapsulate maximum informational content. Finally, the vec2text model translates these distilled vectors back into textual form.

Document understanding

DocKD: Knowledge distillation from LLMs for open-world document understanding models
Sungnyun Kim, Haofu Liao, Srikar Appalaraju, Peng Tang, Zhuowen Tu, Ravi Kumar Satzoda, R. Manmatha, Vijay Mahadevan, Stefano Soatto

Information retrieval

Evaluating D-MERIT of partial-annotation on information retrieval
Royi Rassin, Yaron Fairstein, Oren Kalinsky, Guy Kushilevitz, Nachshon Cohen, Alexander Libov, Yoav Goldberg

Identifying high consideration e-commerce search queries
Zhiyu Chen, Jason Choi, Besnik Fetahu, Shervin Malmasi

Learning when to retrieve, what to rewrite, and how to respond in conversational QA*
Nirmal Roy, Leonardo Ribeiro, Rexhina Blloshmi, Kevin Small

Natural-language understanding

Intent detection in the age of LLMs
Gaurav Arora, Shreya Jain, Srujana Merugu

Intent detection in the age of LLMs.png
"Intent detection in the age of LLMs" proposes a methodology for adaptive in-context learning and chain-of-thought-based intent detection using LLMs.

Predicting entity salience in extremely short documents
Ben Bullough, Harrison Lundberg, Chen Hu, Weihang Xiao

LLM evaluation

AXCEL: Automated eXplainable consistency evaluation using LLMs*
P Aditya Sreekar, Sahil Verma, Suransh Chopra, Sarik Ghazarian, Abhishek Persad, Narayanan Sadagopan

Precise model benchmarking with only a few observations
Riccardo Fogliato, Pratik Patil, Nil-Jana Akpinar, Mathew Monfort

LLM fine tuning

AdaZeta: Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-tuning
Yifan Yang, Kai Zhen, Ershad Banijamali, Thanasis Mouchtaris, Zheng Zhang

RoseLoRA: Row and column-wise sparse low-rank adaptation of pre-trained language model for knowledge editing and fine-tuning
Haoyu Wang, Tianci Liu, Ruirui Li, Monica Cheng, Tuo Zhao, Jing Gao

RoseLoRA.png
The row- and column-wise sparse low-rank adaptation (RoseLoRA) framework proposed in "RoseLoRA: Row and column-wise sparse low-rank adaptation of pre-trained language model for knowledge editing and fine-tuning".

LLMs for speech

Speechworthy instruction-tuned language models
Hyundong Cho, Nicolaas Jedema, Leonardo Ribeiro, Karishma Sharma, Pedro Szekely, Alessandro Moschitti, Ruben Janssen, Jonathan May

LLM misinformation mitigation

ECON: On the detection and resolution of evidence conflicts
Cheng Jiayang, Chunkit Chan, Qianqian Zhuang, Lin Qiu, Tianhang Zhang, Tengxiao Liu, Yangqiu Song, Yue Zhang, Pengfei Liu, Zheng Zhang

Generative subgraph retrieval for knowledge graph–grounded dialog generation
Jinyoung Park, Minseok Joo, Joo-Kyung Kim, Hyunwoo J. Kim

HalluMeasure: Fine-grained hallucination measurement using chain-of-thought reasoning
Shayan Ali Akbar, Md Mosharaf Hossain, Tess Wood, Si-Chi Chin, Erica Salinas, Victor Alvarez, Erwin Cornejo

Knowledge-centric hallucination detection
Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo, Tianhang Zhang, Yang Xu, Yun Luo, Pengfei Liu, Zheng Zhang, Yue Zhang

LLM reasoning

Auto-evolve: Enhancing large language model’s performance via self-reasoning framework*
Krishna Aswani, Alex Lu, Pranav Patankar, Priya Dhalwani, Iris Tan, Jayant Ganeshmohan, Simon Lacasse

LLM self-correction

LLM self-correction with DeCRIM: Decompose, critique, and refine for enhanced following of instructions with multiple constraints
Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng

DeCRIM.png
In the DeCRIM pipeline proposed in "LLM self-correction with DeCRIM: Decompose, critique, and refine for enhanced following of instructions with multiple constraints", an LLM first generates a response to a user request. The Decomposer then breaks down the request into granular constraints, and the Critic model gives feedback on whether the response meets those constraints. If it does, the response is output; if not, the LLM uses the feedback to refine the response.

LLM training

Dancing in chains: Reconciling instruction following and faithfulness in language models
Zhengxuan Wu, Yuhao Zhang, Peng Qi, Yumo Xu, Rujun Han, Yian Zhang, Jifan Chen, Bonan Min, Zhiheng Huang

DEM: Distribution edited model for training with mixed data distributions
Dhananjay Ram, Aditya Rawal, Momchil Hardalov, Nikolaos Pappas, Sheng Zha

DEM: Distribution Edited Model for Training with Mixed Data Distributions
The distribution-edited model D) described in "DEM: Distribution edited model for training with mixed data distributions" results from fine-tuning a pretrained model (Θ) on n individual data distributions (Di) and combining the resulting models with basic element-wise vector operations. Here, the extracted distribution vectors (∆ΘDi ) are multiplied by weight coefficients, and the weighted sum is added to the base model.

Evolutionary contrastive distillation for language model alignment
Julian Katz-Samuels, Zheng Li, Hyokun Yun, Priyanka Nigam, Yi Xu, Vaclav Petricek, Bing Yin, Trishul Chilimbi

Hop, skip, jump to convergence: Dynamics of learning rate transitions for improved training of large language models
Shreyas Subramanian, Vignesh Ganapathiraman, Corey Barrett

Learning from relevant subgoals in successful dialogs using iterative training for task-oriented dialog systems
Magdalena Kaiser, Patrick Ernst, Gyuri Szarvas

Quality matters: Evaluating synthetic data for tool-using LLMs
Shadi Iskander, Nachshon Cohen, Zohar Karnin, Ori Shapira, Sofia Tolmach

Query autocompletion

AmazonQAC: A large-scale, naturalistic query autocomplete dataset
Dante Everaert, Rohit Patki, Tianqi Zheng, Christopher Potts

DiAL: Diversity aware listwise ranking for query auto-complete
Sonali Singh, Sachin Farfade, Prakash Mandayam Comar

Question answering

RAG-QA arena: Evaluating domain robustness for long-form retrieval-augmented question answering
Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan Min, Vittorio Castelli

Retrieving contextual information for long-form question answering using weak supervision
Philipp Christmann, Svitlana Vakulenko, Ionut Teodor Sorodoc, Bill Byrne, Adrià de Gispert

Recommender systems

Efficient pointwise-pairwise learning-to-rank for news recommendation
Nithish Kannen Senthilkumar, Yao Ma, Gerrit van den Burg, Jean Baptiste Faddoul

Efficient pointwise-pairwise learning-to-rank for news recommendation.png
An illustration of the GLIMPSE framework proposed in "Efficient pointwise-pairwise learning-to-rank for news recommendation". GLIMPSE adopts a multitask approach in which a pretrained language model is fine-tuned on both the relevance prediction task and the pairwise-preference task. During inference, the relevance predictions are used to produce an initial pointwise ranking, which is subsequently improved by one or more right-to-left (RTL) passes using pairwise comparisons.

PEARL: Preference extraction with exemplar augmentation and retrieval with LLM agents
Vijit Malik, Akshay Jagatap, Vinayak Puranik, Anirban Majumder

Sequential LLM framework for fashion recommendation
Han Liu, Xianfeng Tang, Tianlang Chen, Jiapeng Liu, Indu Indu, Henry Peng Zou, Peng Dai, Roberto Fernandez Galan, Mike Porter, Dongmei Jia, Ning Zhang, Lian Xiong

Responsible AI

Attribute controlled fine-tuning for large language models: A case study on detoxification
Tao Meng, Ninareh Mehrabi, Palash Goyal, Anil Ramakrishna, Aram Galstyan, Richard Zemel, Kai-Wei Chang, Rahul Gupta, Charith Peris

FLIRT: Feedback loop in-context red teaming
Ninareh Mehrabi, Palash Goyal, Christophe Dupuy, Qian Hu, Shalini Ghosh, Richard Zemel, Kai-Wei Chang, Aram Galstyan, Rahul Gupta

Order of magnitude speedups for LLM membership inference
Rongting Zhang, Martin Bertran Lopez, Aaron Roth

Synthetic data generation

CorrSynth: A correlated sampling method for diverse dataset generation from LLMs
Suhas Kowshik, Abhishek Divekar, Vijit Malik

A Correlated Sampling Method for Diverse Dataset Generation from LLMs
"CorrSynth: A correlated sampling method for diverse dataset generation from LLMs" introduces a sampling method that uses anti-correlation between examples rather than few-shot generation.

DATA ADVISOR: Dynamic data curation for safety alignment of large language models
Fei Wang, Ninareh Mehrabi, Palash Goyal, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

Evaluating differentially private synthetic data generation in high-stakes domains
Krithika Ramesh, Nupoor Gandhi, Pulkit Madaan, Lisa Bauer, Charith Peris, Anjalie Field

SYNTHESIZRR: Generating diverse datasets with retrieval augmentation
Abhishek Divekar, Greg Durrett

Abstract depiction of the SYNTHESIZRR procedure
Abstract depiction of the procedure proposed in "SYNTHESIZRR: Generating diverse datasets with retrieval augmentation". The content sourcing stage retrieves K unique documents {r1,...,rK} from a large corpus for each in-context covariate xICL. The task-inversion stage uses a parameterized context refinement prompt, Pτ, which takes parameters Rinv (inversion instruction), rk (a retrieved document), and V(yICL) (the verbalized target label). A generalist teacher LLM autoregressively generates a synthetic covariate. Each in-context example thus produces K unique synthetic examples {x̃1,..., x̃K}, which we include in the dataset with target yICL.

Text classification

Distance-aware calibration for pre-trained language models*
Alberto Gasparin, Gianluca Detommaso

Performance-guided LLM knowledge distillation for efficient text classification at scale

Flavio Di Palo, Prateek Singhi, Bilal Fadlallah

Prompt-tuned muti-task taxonomic transformer (PTMTTaxoFormer)
Rajashekar Vasantha, Nhan Nguyen, Yue Zhang

Text summarization

Salient information prompting to steer content in prompt-based abstractive summarization
Lei Xu, Asad Karim, Saket Dingliwal, Aparna Elangovan

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
GB, London
Are you passionate about bringing connectivity to underserved customers? Do you want to work in a dynamic team building, launching and operating a satellite service for consumers from the ground up? Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. Project Kuiper is looking for a talented individual to deliver Europe Business Analytics. This role is responsible for developing and optimizing metrics to track business growth, subscriber acquisition, and demand planning; as well as field operations volume, customer contacts, and inventory trends for operational planning in the Europe. The ideal candidate is a self-starter who is comfortable upholding high standards across a wide range of domains, can manage responsibility for large scale business impact and can communicate effectively with executive audiences. They are comfortable working with data science and engineering teams to use data and infrastructure environments as well as with business audiences to quantify business impact and establish roadmaps. This position may require access to information, technology, or hardware that is subject to export control laws and regulations, including the Export Administration Regulations (EAR) and the International Traffic in Arms Regulations (ITAR). Employment in this position is contingent upon obtaining any required export licenses or other approvals from the United States government. As such, the successful candidate must be eligible to obtain any necessary export licenses or approvals based on their nationality, citizenship, and any other factors considered by the applicable export control regulations. Key job responsibilities • Create a scalable customer insight mechanism (e.g. conjoint) • Define metrics to identify drivers of subscriber acquisition, retention, and overall business health • Develop recurring competitive insights and pricing trend analysis • Collaborate with Regional Leads to identify gaps and trends to drive actionable insights across Europe • Deliver comprehensive, written strategy documents considering different types of data and inputs across a broad range of stakeholders • Enable decision-making by retrieving and aggregating data from multiple sources to present it in a digestible and actionable format • Architect standardized data models in the data warehouse for analysis and long-term reporting • Work with product teams to identify gaps and trends • Analyze large data sets using a variety of database query and visualization tools
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, CA, Pasadena
Do you have a strong science background and want to help build new technologies? Do you have a physics background and want to help build and test superconducting circuits? Join the quantum revolution at Amazon and be part of a team that's pushing the boundaries of what's possible in quantum computing and quantum technologies. As a Research Science Intern focused on Quantum Technologies, you'll have the opportunity to work alongside leading experts in the field, contributing to cutting-edge research and driving innovation in areas such as quantum algorithms, quantum simulation, superconducting qubits, quantum key distribution, and quantum optics. We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of Amazon's customers. Research interns at Amazon work passionately to apply cutting-edge advances in technology to solve real-world problems. As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, and implement prototypes. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Quantum Research Science Internships in Pasadena, CA. Key job responsibilities We are particularly interested in candidates with the following skills: Experience with working on commercial quantum computation at hardware, software, or consulting companies. Experience with AWS technologies like EC2, S3, and Cloudwatch. Familiarity with using data visualization tools. Demonstrable track record of dealing well with ambiguity, prioritizing needs, and delivering results in a dynamic environment. Quantum Algorithms, Quantum Simulators, Superconducting Qubits, Optics In this role, you gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Conduct research and develop new quantum algorithms to solve complex computational problems - Design and implement quantum simulation models to study the behavior of quantum systems - Investigate the properties and performance of superconducting qubits, a promising platform for building large-scale quantum computers - Explore the application of quantum optics principles to develop novel quantum sensing and communication technologies
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.