A quick guide to Amazon's 65-plus papers at this year's ACL

Familiar topics such as question answering and natural-language understanding remain well represented, but a new concentration on language modeling and multimodal models reflect the spread of generative AI.

Between the main conference and the recently inaugurated ACL Proceedings, Amazon researchers have more than 65 papers at this year's meeting of the Association for Computational Linguistics (ACL).

Automatic speech recognition

Masked audio text encoders are effective multi-modal rescorers*
Jason Cai, Monica Sunkara, Xilai Li, Anshu Bhatia, Xiao Pan, Sravan Bodapati

Code generation

A static evaluation of code completion by large language models
Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xiaopeng LI, Murali Krishna Ramanathan, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang

Multitask pretraining with structured knowledge for text-to-SQL generation
Robert Giaquinto, Dejiao Zhang, Benjamin Kleiner, Yang Li, Ming Tan, Parminder Bhatia, Ramesh Nallapati, Xiaofei Ma

Code switching

Code-switched text synthesis in unseen language pairs*
I-Hung Hsu, Avik Ray, Shubham Garg, Nanyun Peng, Jing Huang

CoMix: Guide transformers to code-mix using POS structure and phonetics*
Gaurav Arora, Srujana Merugu, Vivek Sembium

Continual learning

Characterizing and measuring linguistic dataset drift
Tyler A. Chang, Kishaloy Halder, Neha Anna John, Yogarshi Vyas, Yassine Benajiba, Miguel Ballesteros, Dan Roth

Data-/table-to-text applications

An inner table retriever for robust table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Few-shot data-to-text generation via unified representation and multi-source learning
Alexander Hanbo Li, Mingyue Shang, Evangelia Spiliopoulou, JIE MA, Patrick Ng, Zhiguo Wang, Bonan Min, William Wang, Kathleen McKeown, Vittorio Castelli, Dan Roth, Bing Xiang

Improving cross-task generalization of unified table-to-text models with compositional task configurations*
Jifan Chen, Yuhao Zhang, Lan Liu, Rui Dong, Xinchi Chen, Patrick Ng, William Wang, Zhiheng Huang

LI-RAGE: Late interaction retrieval augmented generation with explicit signals for open-domain table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Dialogue

Diable: Efficient dialogue state tracking as operations on tables*
Pietro Lesci, Yoshinari Fujinuma, Momchil Hardalov, Chao Shang, Lluis Marquez

NatCS: Eliciting natural customer support dialogues
James Gung, Emily Moeng, Wesley Rose, Arshit Gupta, Yi Zhang, Saab Mansour

Schema-guided user satisfaction modeling for task-oriented dialogues
Yue Feng, Yunlong Jiao, Animesh Prasad, Nikolaos Aletras, Emine Yilmaz, Gabriella Kazai

Toward more accurate and generalizable evaluation metrics for task-oriented dialogs
Abi Komma, Nagesh Panyam, Timothy Leffel, Anuj Goyal, Angeliki Metallinou, Spyros Matsoukas, Aram Galstyan

Explainable AI

Efficient Shapley values estimation by amortization for text classification
Alan Yang, Fan Yin, He He, Kai-Wei Chang, Xiaofei Ma, Bing Xiang

Few shot rationale generation using self-training with dual teachers*
Aditya Srikanth Veerubhotla, Lahari Poddar, Jun Yin, Gyuri Szarvas, Sharanya Eswaran

Information extraction

An AMR-based link prediction approach for document-level event argument extraction
Yuqing Yang, Qipeng Guo, Xiangkun Hu, Yue Zhang, Qipeng Guo, Zheng Zhang

AVEN-GR: Attribute value extraction and normalization using product graphs
Donato Crisostomi, Thomas Ricatte

Large scale generative multimodal attribute extraction for e-commerce attributes
Anant Khandelwal, Happy Mittal, Shreyas Sunil Kulkarni, Deepak Gupta

ParaAMR: A large-scale syntactically diverse paraphrase dataset by AMR back-translation
Kuan-Hao Huang, Varun Iyer, I-Hung Hsu, Anoop Kumar, Kai-Wei Chang, Aram Galstyan

Weakly supervised hierarchical multi-task classification of customer questions
Jitenkumar Rana, Promod Yenigalla, Chetan Aggarwal, Sandeep Mukku, Manan Soni, Rashmi Patange

WebIE: Faithful and robust information extraction on the web
Chenxi Whitehouse, Clara Vania, Alham Fikri Aji, Christos Christodoulopoulos, Andrea Pierleoni

Information retrieval

CUPID: Curriculum learning based real-time prediction using distillation
Arindam Bhattacharya, Ankith M S, Ankit Gandhi, Vijay Huddar, Atul Saroop, Rahul Bhagat

Direct fact retrieval from knowledge graphs without entity linking
Jinheon Baek, Alham Fikri Aji, Jens Lehmann, Sung Ju Hwang

Language modeling

Adaptation approaches for nearest neighbor language models*
Rishabh Bhardwaj, George Polovets, Monica Sunkara

CONTRACLM: Contrastive learning for causal language model
Nihal Jain, Dejiao Zhang, Wasi Ahmad, Zijian Wang, Feng Nan, Xiaopeng LI, Ming Tan, Baishakhi Ray, Parminder Bhatia, Xiaofei Ma, Ramesh Nallapati, Bing Xiang

Controlled text generation with hidden representation transformations*
Vaibhav Kumar, Hana Koorehdavoudi, Masud Moshtaghi, Amita Misra, Ankit Chadha, Emilio Ferrara

KILM: Knowledge injection into encoder-decoder language models
Yan XU, Mahdi Namazifar, Devamanyu Hazarika, Aishwarya Padmakumar, Yang Liu, Dilek Hakkani-Tür

ReAugKD: Retrieval-augmented knowledge distillation for pre-trained language models
Jianyi Zhang, Aashiq Muhamed, Aditya Anantharaman, Guoyin Wang, Changyou Chen, Kai Zhong, Qingjun Cui, Yi Xu, Belinda Zeng, Trishul Chilimbi, Yiran Chen

Recipes for sequential pre-training of multilingual encoder and seq2seq models*
Saleh Soltan, Andy Rosenbaum, Tobias Falke, Qin Lu, Anna Rumshisky, Wael Hamza

Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale
Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, Dan Roth

Machine learning

Mitigating the burden of redundant datasets via batch-wise unique samples and frequency-aware losses
Donato Crisostomi, Andrea Caciolai, Alessandro Pedrani, Alessandro Manzotti, Enrico Palumbo, Kay Rottmann, Davide Bernardi

Machine translation

RAMP: Retrieval and attribute-marking enhanced prompting for attribute-controlled translation
Gabriele Sarti, Phu Mon Htut, Xing Niu, Benjamin Hsu, Anna Currey, Georgiana Dinu, Maria Nădejde

Multimodal models

Benchmarking diverse-modal entity linking with generative models*
Sijia Wang, Alexander Li, Henry Zhu, Sheng Zhang, Pramuditha Perera, Chung-Wei Hang, JIE MA, William Wang, Zhiguo Wang, Vittorio Castelli, Bing Xiang, Patrick Ng

Generate then select: Open-ended visual question answering guided by world knowledge*
Xingyu Fu, Sheng Zhang, Gukyeong Kwon, Pramuditha Perera, Henry Zhu, Yuhao Zhang, Alexander Hanbo Li, William Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, Dan Roth, Bing Xiang

KG-FLIP: Knowledge-guided fashion-domain language-image pre-training for e-commerce
Qinjin Jia, Yang Liu, Shaoyuan Xu, Huidong Liu, Daoping Wu, Jinmiao Fu, Roland Vollgraf, Bryan Wang

Resolving ambiguities in text-to-image generative models
Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard Zemel, Aram Galstyan, Rahul Gupta

Translation-enhanced multilingual text-to-image generation
Yaoyiran Li, Ching-Yun (Frannie) Chang, Stephen Rawls, Ivan Vulić, Anna Korhonen

Unsupervised melody-to-lyric generation
Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Chenyang Tao, Gunnar Sigurdsson, Wenbo Zhao, Tagyoung Chung, Jing Huang, Violet Peng

Natural-language processing

Multi-VALUE: A framework for cross-dialectal English NLP
Caleb Ziems, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, Diyi Yang

vONTSS: vMF based semi-supervised neural topic modeling with optimal transport*
Weijie Xu, Xiaoyu Jiang, Srinivasan Sengamedu, "SHS", Francis Iannacci, Jinjin Zhao

Natural-language understanding

ECG-QALM: Entity-controlled synthetic text generation using contextual Q&A for NER*
Karan Aggarwal, Henry Jin, Aitzaz Ahmad

Entity contrastive learning in a large-scale virtual assistant system
Jonathan Rubin, Jason Crowley, George Leung, Morteza Ziyadi, Maria Minakova

EPIC: Multi-perspective annotation of a corpus of irony
Simona Frenda, Alessandro Pedrani, Valerio Basile, Soda Marem Lo, Alessandra Teresa Cignarella, Raffaella Panizzon, Cristina Marco, Bianca Scarlini, Viviana Patti, Cristina Bosco, Davide Bernardi

Measuring and mitigating local instability in deep neural networks*
Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan

Reducing cohort bias in natural language understanding systems with targeted self-training scheme
Thu Le, Gabriela Cortes Hernandez, Bei Chen, Melanie Bradford

Privacy

Controlling the extraction of memorized data from large language models via prompt-tuning
Mustafa Ozdayi, Charith Peris, Jack G. M. FitzGerald, Christophe Dupuy, Jimit Majmudar, Haidar Khan, Rahil Parikh, Rahul Gupta

Query rewriting

Context-aware query rewriting for improving users’ search experience on e-commerce websites
Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao

Unified contextual query rewriting
Yingxue Zhou, Jie Hao, Mukund Rungta, Yang Liu, Eunah Cho, Xing Fan, Yanbin Lu, Vishal Vasudevan, Kellen Gillespie, Zeynab Raeesy, Sawyer Shen, Edward Guo, Gokhan Tur

Question answering

Accurate training of web-based question answering systems with feedback from ranked users
Liang Wang, Ivano Lauriola, Alessandro Moschitti

Context-aware transformer pre-training for answer sentence selection
Luca Di Liello, Siddhant Garg, Alessandro Moschitti

Cross-Lingual Knowledge Distillation for answer sentence selection in low-resource languages*
Shivanshu Gupta, Yoshitomo Matsubara, Ankit Chadha, Alessandro Moschitti

Exploiting abstract meaning representation for open-domain question answering*
Cunxiang Wang, Zhikun Xu, Qipeng Guo, Xiangkun Hu, Xuefeng Bai, Zheng Zhang, Yue Zhang

Hybrid hierarchical retrieval for open-domain question answering*
Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi Chen, William Wang, Zhiheng Huang

Learning answer generation using supervision from automatic question answering evaluators
Matteo Gabburo, Siddhant Garg, Rik Koncel-Kedziorski, Alessandro Moschitti

RobustQA: Benchmarking the robustness of domain adaptation for open-domain question answering*
Rujun Han, Peng Qi, Yuhao Zhang, Lan Liu, Juliette Burger, William Wang, Zhiheng Huang, Bing Xiang, Dan Roth

Reasoning

FolkScope: Intention knowledge graph construction for e-commerce commonsense discovery*
Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, Bing Yin

SCOTT: Self-consistent chain-of-thought distillation
Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, Xiang Ren

Self-learning

Constrained policy optimization for controlled self-learning in conversational AI systems
Mohammad Kachuee, Sungjin Lee

Scalable and safe remediation of defective actions in self-learning conversational systems
Sarthak Ahuja, Mohammad Kachuee, Fateme Sheikholeslami, Weiqing Liu, Jae Do

Semantic parsing

An empirical analysis of leveraging knowledge for low-resource task-oriented semantic parsing*
Mayank Kulkarni, Aoxiao Zhong, Nicolas Guenon Des Mesnards, Sahar Movaghati, Mukund Harakere, He Xie, Jianhua Lu

XSEMPLR: Cross-lingual semantic parsing in multiple natural languages and meaning representations
Yusen Zhang, Jun Wang, Zhiguo Wang, Rui Zhang

Spoken-language understanding

Regression-free model updates for spoken language understanding
Andrea Caciolai, Verena Weber, Tobias Falke, Alessandro Pedrani, Davide Bernardi

Sharing encoder representations across languages, domains and tasks in large-scale spoken language understanding
Jonathan Hueser, Judith Gaspers, Thomas Gueudre, Chandana Satya Prakash, Jin Cao, Daniil Sorokin, Quynh Do, Nicolas Anastassacos, Tobias Falke, Turan Gojayev, Mariusz Momotko, Denis Romasanta Rodriguez, Austin Doolittle, Kartik Balasubramaniam, Wael Hamza, Fabian Triefenbach, Patrick Lehnen

Toxic-language classification

QCon at SemEval-2023 Task 10: Data augmentation and model ensembling for detection of online sexism
Wes Feely, Prabhakar Gupta, Manas Mohanty, Tim Chon, Tuhin Kundu, Vijit Singh, Sandeep Atluri, Tanya Roosta, Viviane Ghaderi, Peter Schulam, Heba Elfardy

Towards building a robust toxicity predictor
Dmitriy Bespalov, Sourav Bhabesh, Yi Xiang, Yanjun (Jane) Qi

*Accepted to ACL Findings

Research areas

Related content

US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, NY, New York
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, WA, Bellevue
The Amazon Fulfillment Technology (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We solve a wide range of challenges encountered throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. We are tasked with developing innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run frequently (ranging from every few minutes to every few hours per use case) and continuously across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with other scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions using a variety of tools and observe direct impact on process efficiency and associate experience in the fulfillment network. Key responsibilities include: - Develop understanding and domain knowledge of operational processes, system architecture and functions, and business requirements - Deep dive into data and code to identify opportunities for continuous improvement and/or disruptive new approaches - Develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and new challenges - Create prototypes and simulations for agile experimentation of devised solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with engineers to integrate prototypes into production systems - Design experiments to test new or incremental solutions launched in production and build metrics to track performance A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team has expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM. We also possess deep domain expertise in operational processes within FCs and their challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Resulting production systems rely on a diverse set of technologies; our teams therefore invest in multiple specialties as the needs of each focus area evolve.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, WA, Seattle
Employer: Amazon.com Services LLC Position: Economist III (multiple positions available) Location: Seattle, Washington Multiple Positions Available: 1. Partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond; 2. Build econometric models using our world class data systems and apply approaches from a variety of skillsets - applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon; 3. Work in a fast moving environment to solve business problems as a member of either a crossfunctional team embedded within a business unit or a central science and economics organization; 4. Develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company; and 5. Utilize deep knowledge in time series econometrics, asset pricing, empirical macroeconomics, or the use of micro and panel data to improve and validate traditional aggregative models. (40 hours / week, 8:00am-5:00pm, Salary Range $159,200.00/year to $215,300.00/year) Amazon.com is an Equal Opportunity – Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation