A quick guide to Amazon’s papers at ACL 2024

Work on large language models predominates, with a particular focus on model evaluation.

Like the field of conversational AI in general, Amazon’s papers at this year’s meeting of the Association for Computational Linguistics (ACL) are dominated by work on large language models (LLMs). The properties that make LLMs’ outputs so extraordinary — such as their linguistic fluency and semantic coherence — are also notoriously difficult to quantify; as such, model evaluation has emerged as a particular area of focus. But Amazon’s papers explore a wide range of LLM-related topics, from applications such as code synthesis and automatic speech recognition to problems of LLM training and deployment, such as continual pretraining and hallucination mitigation. Papers accepted to the recently inaugurated Proceedings of the ACL are marked with asterisks.

Code synthesis

Fine-tuning language models for joint rewriting and completion of code with potential bugs
Dingmin Wang, Jinman Zhao, Hengzhi Pei, Samson Tan, Sheng Zha

Bug injection.png
Obtaining buggy partial code via bug injection. From “Fine-tuning language models for joint rewriting and completion of code with potential bugs”.

Continual pretraining

Efficient continual pre-training for building domain specific large language models*
Yong Xie, Karan Aggarwal, Aitzaz Ahmad

Data quality

A shocking amount of the web is machine translated: Insights from multi-way parallelism*
Brian Thompson, Mehak Dhaliwal, Peter Frisch, Tobias Domhan, Marcello Federico

Document summarization

The power of summary-source alignments
Ori Ernst, Ori Shapira, Aviv Slobodkin, Sharon Adar, Mohit Bansal, Jacob Goldberger, Ran Levy, Ido Dagan

Hallucination mitigation

Learning to generate answers with citations via factual consistency models
Rami Aly, Zhiqiang Tang, Samson Tan, George Karypis

Intent classification

Can your model tell a negation from an implicature? Unravelling challenges with intent encoders
Yuwei Zhang, Siffi Singh, Sailik Sengupta, Igor Shalyminov, Hwanjun Song, Hang Su, Saab Mansour

Irony recognition

MultiPICo: Multilingual perspectivist irony corpus
Silvia Casola, Simona Frenda, Soda Marem Lo, Erhan Sezerer, Antonio Uva, Valerio Basile, Cristina Bosco, Alessandro Pedrani, Chiara Rubagotti, Viviana Patti, Davide Bernardi

Knowledge grounding

Graph chain-of-thought: Augmenting large language models by reasoning on graphs
Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang, Suhang Wang, Yu Meng, Jiawei Han

MATTER: Memory-augmented transformer using heterogeneous knowledge sources*
Dongkyu Lee, Chandana Satya Prakash, Jack G. M. FitzGerald, Jens Lehmann

Tree-of-traversals: A zero-shot reasoning algorithm for augmenting black-box language models with knowledge graphs
Elan Markowitz, Anil Ramakrishna, Jwala Dhamala, Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

Tree of traversals.png
An example of how the tree-of-traversals method uses a knowledge graph interface for the query “What actor played in both Inception and Interstellar?” From "Tree-of-traversals: A zero-shot reasoning algorithm for augmenting black-box language models with knowledge graphs".

LLM decoding

BASS: Batched attention-optimized speculative sampling*
Haifeng Qian, Sujan Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda, Ramesh Nallapati, Sudipta Sengupta, Anoop Deoras

Machine translation

Impacts of misspelled queries on translation and product search
Greg Hanneman, Natawut Monaikul, Taichi Nakatani

The fine-tuning paradox: Boosting translation quality without sacrificing LLM abilities
David Stap, Eva Hasler, Bill Byrne, Christof Monz, Ke Tran

Model editing

Propagation and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks
Wenyue Hua, Jiang Guo, Marvin Dong, Henghui Zhu, Patrick Ng, Zhiguo Wang

ReCoE construction.png
Demonstration of the process used to construct data for the reasoning-based counterfactual-editing (ReCoE) dataset. Straight lines represent data sourced from existing datasets; dashed lines denote data derived from LLM generation; zigzag lines denote data obtained through the corruption of other data. From "Propagation and pitfalls: Reasoning-based assessment of knowledge editing through counterfactual tasks".

Model evaluation

Bayesian prompt ensembles: Model uncertainty estimation for black-box large language models
Francesco Tonolini, Jordan Massiah, Nikolaos Aletras, Gabriella Kazai

ConSiDERS—the-human evaluation framework: Rethinking human evaluation for generative large language models
Aparna Elangovan, Ling Liu, Lei Xu, Sravan Bodapati, Dan Roth

Factual confidence of LLMs: On reliability and robustness of current estimators
Matéo Mahaut, Laura Aina, Paula Czarnowska, Momchil Hardalov, Thomas Müller, Lluís Marquez

Fine-tuned machine translation metrics struggle in unseen domains
Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana Badeka, Jenyuan Wang, Brian Thompson

Measuring question answering difficulty for retrieval-augmented generation
Matteo Gabburo, Nicolaas Jedema, Siddhant Garg, Leonardo Ribeiro, Alessandro Moschitti

Model robustness

Extreme miscalibration and the illusion of adversarial robustness
Vyas Raina, Samson Tan, Volkan Cevher, Aditya Rawal, Sheng Zha, George Karypis

Multimodal models

CaMML: Context-aware multimodal learner for large models
Yixin Chen, Shuai Zhang, Boran Han, Tong He, Bo Li

CAMML.png
The CaMML framework, which consists of a retriever, a perceiver and a generator. After receiving user query q, the CaMML retriever identifies relevant multimodal contexts C from the data store. Then the CaMML perceiver seamlessly integrates data of various modalities, effectively encoding long-context information and injecting it into the CaMML generator. This enables the prediction of responses that are conditioned on both the context and the query. From "CaMML: Context-aware multimodal learner for large models".

Multi-modal retrieval for large language model based speech recognition
Jari Kolehmainen, Aditya Gourav, Prashanth Gurunath Shivakumar, Yi Gu, Ankur Gandhe, Ariya Rastrow, Grant Strimel, Ivan Bulyko

REFINESUMM: Self-refining MLLM for generating a multimodal summarization dataset
Vaidehi Patil, Leonardo Ribeiro, Mengwen Liu, Mohit Bansal, Markus Dreyer

Ordinal classification

Exploring ordinality in text classification: A comparative study of explicit and implicit techniques
Siva Rajesh Kasa, Aniket Goel, Sumegh Roychowdhury, Karan Gupta, Anish Bhanushali, Nikhil Pattisapu, Prasanna Srinivasa Murthy

Question answering

Beyond boundaries: A human-like approach for question answering over structured and unstructured information sources*
Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, Sahar Vahdati

MinPrompt: Graph-based minimal prompt data augmentation for few-shot question answering
Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Wei Wang

Synthesizing conversations from unlabeled documents using automatic response segmentation
Fanyou Wu, Weijie Xu, Chandan Reddy, Srinivasan Sengamedu, "SHS"

Reasoning

Eliciting better multilingual structured reasoning from LLMs through code
Bryan Li, Tamer Alkhouli, Daniele Bonadiman, Nikolaos Pappas, Saab Mansour

II-MMR: Identifying and improving multi-modal multi-hop reasoning in visual question answering*
Jihyung Kil, Farideh Tavazoee, Dongyeop Kang, Joo-Kyung Kim

Recommender systems

Generative explore-exploit: Training-free optimization of generative recommender systems using LLM optimizers
Besnik Fetahu, Zhiyu Chen, Davis Yoshida, Giuseppe Castellucci, Nikhita Vedula, Jason Choi, Shervin Malmasi

Towards translating objective product attributes into customer language
Ram Yazdi, Oren Kalinsky, Alexander Libov, Dafna Shahaf

Responsible AI

SpeechGuard: Exploring the adversarial robustness of multimodal large language models
Raghuveer Peri, Sai Muralidhar Jayanthi, Srikanth Ronanki, Anshu Bhatia, Karel Mundnich, Saket Dingliwal, Nilaksh Das, Zejiang Hou, Goeric Huybrechts, Srikanth Vishnubhotla, Daniel Garcia-Romero, Sundararajan Srinivasan, Kyu Han, Katrin Kirchhoff

Text completion

Token alignment via character matching for subword completion*
Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Gonugondla, Sanjay Krishna Gouda, Rob Kwiatkowski, Ramesh Nallapati, Bing Xiang

Token alignment.png
An illustration of token alignment process presented in "Token alignment via character matching for subword completion".

Research areas

Related content

US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation