A version of the BERT language model that’s 20 times as fast

Determining the optimal architectural parameters reduces network size by 84% while improving performance on natural-language-understanding tasks.

In natural-language understanding (NLU), the Transformer-based BERT language model is king. Its high performance on multiple tasks has strongly influenced contemporary NLU research. 

On the other hand, it is a relatively big and slow model, which makes it unsuitable for some applications. Multiple efforts have been made to compress the BERT architecture, but the choice of architectural parameters (the number of layers, the number of processing nodes per layer, and so on) has been somewhat arbitrary, and the resulting models are rarely much better than the original at optimizing the balance between the model’s size, speed, and error rate.

A few weeks ago, we released part of the code for Bort, a highly optimized language model (LM) extracted from the BERT architecture through a combination of two rigorous algorithmic techniques especially designed for neural-network compression.

We tested Bort on 23 NLU tasks, and on 20 of them, it improved on BERT’s performance — by 31% in one case — even though it’s 16% the size and about 20 times as fast.

The code doesn’t contain the full versions of the algorithms we used to extract Bort from BERT, but I will discuss them here briefly.

Principled approach

A solid understanding of the intrinsic difficulty of a problem allows us to design efficient and correct algorithms for solving that problem that can be trusted to perform consistently. Think of trying to sort an array of numbers by just trying out random permutations: this approach will quickly become intractable as the size of the input grows. Thankfully, sorting is a well-studied problem with fast and correct solutions and a nicely bounded runtime growth. Why can’t compressing BERT, or any network, be the same way? 

We wanted to produce a version of BERT whose architectural parameters minimized its parameter sizeinference speed, and error rate, and I wanted to show that these architectural parameters were optimal. I call this problem “optimal subarchitecture extraction”, or OSE. Note that this is a different compression approach than weight pruning, which heuristically removes connections from a previously trained network. 

An algorithm solving OSE should also work for any input, not just BERT; a general-purpose algorithm would save a lot of time — and GPU cycles — otherwise spent on trial and error approaches.

Model showing comparison of weight pruning and optimal subarchitecture extractionfor a toy source network.
Comparison of weight pruning (left, bottom) and optimal subarchitecture extraction (or OSE, bottom right) for a toy source network (top). Weight pruning removes edges from a (usually trained) network, while OSE reparametrizes the layers. For example, the source network has two fully connected linear layers of dimensions 4x3 and 4x4 (second and third from the left), making its architectural parameters (2, 4, 3, 4, 4). The optimal subarchitecture ended up with two layers of dimensions 3x3 and 3x2, so the architectural parameters are (2, 3, 3, 3, 2). The parameter size was brought down from 2(4*3 + 4 + 4*4 + 4) = 72 to 2(3*3 + 3 + 3*2 + 2) = 40. 
Credit: Glynis Condon

OSE is a computationally hard problem, so the best we can hope for is an algorithm that returns something in the ballpark of the optimum. But even a ballpark algorithm could be impractically time consuming with a large enough input. 

My research showed that there is an efficient algorithm for extracting a subarchitecture whose functions — parameter size, inference speed, and error rate — have a polynomial correlation with the architectural parameters, meaning that they’re bounded by some polynomial function of the architectural parameters. 

This is easy to see for the parameter size of the network, since it boils down to a counting argument based on the number of nodes per layer, times the number of layers (see image caption above). The same argument can be made for the inference speed — the rate at which a network outputs a result given an input — as it is related to the parameter size. 

Under some circumstances, the algorithm’s error rate has a similar correlation. Furthermore, whenever the “cost” associated with the first (call it A) and last layers of the network is lower than that of the middle layers (B), the runtime of a solution will not explode. I call all these assumptions the ABnC property, which BERT turns out to have.

For inputs having the ABnC property, the algorithm I designed behaves like a fully polynomial-time approximation scheme, or FPTAS. Being an FPTAS means that an approximation parameter — which defines how far short of the optimal solution you’re willing to fall — can now be given as an input to the algorithm, and the algorithm’s execution time depends polynomially on that parameter. 

The more accurate you want the approximation to be, the longer the algorithm takes to execute. But at least the trade-off can be precisely specified, and the runtime of the algorithm is guaranteed to not grow too quickly.

I ran the FPTAS on BERT and obtained a set of architectural parameters (Bort), and from the proofs we knew that it would be Pareto optimal. That is, it optimized the balance between inference speed, parameter size, and error rate: a faster model would necessarily be bigger or more error prone; a more accurate model would be larger or slower. Any model that broke that balance would necessarily be suboptimal.

Generalizability

The true strength of BERT lies in its generalizability across tasks. BERT learns to represent words of a language as points in a shared space, where proximity in the space implies semantic similarity. That general model can then be fine-tuned on specific tasks, such as question answering or text classification.

To see whether Bort generalizes as well as BERT, we needed to pre-train it and then test it on several different natural-language-understanding tasks. The FPTAS doesn’t return a trained model, and it didn’t know that our ultimate goal was fine-tuning.

When fine-tuning, I opted to follow BERT’s approach and attach a single linear classifier to Bort. I supposed that a good LM would have no problems with this setup, but the fine-tuning process was hard, and several variations on this strategy (e.g., knowledge distillation, deeper classifiers, and hyperparameter search) failed to yield a model that reached the theoretical limits predicted by the FPTAS.

In machine learning, it is crucial to have a good selection of features to make the data representative of the task, which in turn makes the task learnable. Deep networks operate in a hierarchical fashion, which makes them fantastic at selecting features automatically. If the model is too small and the data too scarce, however, the task may not be learnable. And Bort is, by design, a small model.

The Agora algorithm

To address this problem, I developed a second algorithm, called Agora, which leverages the development set for the task Bort is being fine-tuned on. In machine learning, a labeled data set is usually split into three components: the training set is used to train a model; the development (or dev) set is used to check for over-/underfitting; and the test set is used to assess the model’s generalizability.

With Agora, Bort is first fine-tuned on the training set, then applied to the data in the dev set. Agora finds the data points in the dev set that the pretrained Bort model labeled incorrectly and samples new points near them in a chosen representation space. Those samples are labeled by a second model, and then they’re added into the training set.

It might sound silly to add randomized points from the dev set to the training set. You might expect the fine-tuned model to overfit the dev set data, so that it doesn’t generalize well to unfamiliar inputs — which means that it didn’t actually learn.

But this is a powerful approach to situations with scarce or ill-formed data. The proof of this is non-trivial, but intuitively, this algorithm works because it “reconstructs” the input in a way that is equivalent, in a precise sense, to the distribution of the task we are modeling in the first place. I believe the best part about Agora is not its effectiveness but that it is another proof of what the great Patrick Winston showed fifty years ago: you can’t learn something that you do not already know almost completely.

Graphic of Agora sampling the development set and generating, labeling and adding new points back to the training set.
In this toy example, we are attempting to learn a data set that looks like a torus. However, the training set is not representative of the distribution. Agora samples from the development set, generates new points, labels them, and adds them back to the training set. Given enough rounds, it is able to generate a data set learnable by any model — even a random guesser!

Credit: Glynis Condon

The application of both algorithms to BERT yielded Bort, which has an effective (not counting the embedding layer) size of 5.5% of the original BERT architecture and a net size of 16%. The effective size is more important because the first layer, by the ABnC property, is not as expensive as the other layers when performing inference. Indeed, Bort is up to 20 times faster, on a CPU, than BERT. It is also able to be pretrained much more rapidly than usual — likely due to the FPTAS’s preferring faster-converging architectures. It also obtained improvements of up to 31%, absolute, with respect to BERT, across multiple NLU benchmarks.

Acknowledgments: Daniel J. Perry, my coauthor for the Bort paper.

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.