Advances in trustworthy machine learning at Alexa AI

The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

At Amazon, we take the protection of customer data very seriously. We are also committed to eliminating the biases that can exist in off-the-shelf language models — such as GPT-3 and RoBERTa — that are the basis of most modern natural-language processing. Trained on public texts, these language models are known to reflect the biases implicit in those texts.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

These two topics — privacy protection and fairness — are at the core of trustworthy machine learning, an important area of research at Alexa AI. In 2021, we made contributions in the following areas:

  • Privacy-preserving machine learningDifferential privacy provides a rigorous way to quantify the privacy of machine learning models. We investigated vulnerabilities presented in the differential-privacy literature and propose computationally efficient mechanisms for protecting against them.
  • Federated learning: Federated learning (FL) is a distributed-training technique that keeps customer data on-device. Devices send only model parameter updates to the cloud, not raw data. We studied several FL challenges arising in an industrial setting.
  • Fairness in machine learning: Machine learning (ML) models should perform equally well regardless of who’s using them. But even knowing how to quantify fairness is a challenge. We introduced measures of fairness and methods to mitigate bias in ML models.
Counterfactuals.png
To reduce binary-gender disparity in a distilled GPT-2 language model, we introduce counterfactual examples, in which binary genders in real-world training examples are swapped.

Below, we summarize our research in these areas, which will be presented at ACL and ICASSP later this year. We also invite readers to participate in workshops and sessions we are organizing at NAACL 2022 and Interspeech 2022.

1. Privacy-preserving ML

The intuition behind differential privacy (DP) is that access to the outputs of a model should not provide any hint about what inputs were used to train the model. DP quantifies that intuition as a difference (in probabilities) between the outputs of a model trained on a given dataset and the outputs of the same model trained on the same dataset after a single input is removed.

One way to meet a DP privacy guarantee is to add some noise to the model parameters during training in order to obfuscate their relationship to training data. But this can compromise accuracy. The so-called privacy/utility tradeoff appears in every DP application.

Another side effect of adding a DP mechanism is increased training time. Given that training natural-language-understanding (NLU) models with large volumes of data can be prohibitively slow and that industry standards require fast training and deployment — e.g., when new features are being released — we developed a training method that meets DP requirements but remains efficient. We describe the method in a paper we’re presenting at this year’s ICASSP, “An efficient DP-SGD mechanism for large scale NLP models”.

In this work, we study the most popular DP mechanism for deep neural networks, DP-SGD, and build a computationally efficient alternative, eDP-SGD, in which we use a batch-processing scheme that leverages the GPU architecture and automates part of the hyperparameter-tuning process. While both DP-SGD and eDP-SGD provide the same privacy guarantees, we show that the training time for our mechanism is very similar to its non-DP counterpart’s. The original DP-SGD extends training time as much as 130-fold.

Related content
ADePT model transforms the texts used to train natural-language-understanding models while preserving semantic coherence.

Since we did our study, researchers have developed methods with stronger theoretical DP guarantees than the ones we impose in our paper, but our approach is consistent with those methods. Overall, this work makes DP more generally accessible and helps us integrate NLU models with DP guarantees into our production systems, where new models are frequently released, and a significant increase in training time is prohibitive.

While DP provides theoretical privacy guarantees, we are also interested in practical guarantees, i.e., measuring the amount of information that could potentially leak from a given model. In addition to the performance and training time of eDP-SGD, we also studied the correlation between theoretical and practical privacy guarantees. We measured practical privacy leakage using the most common method in the field, the success rate of membership inference attacks on a given model. Our experiments provide a general picture of how to optimize the privacy/utility trade-off using DP techniques for NLU models.

We also expanded the set of mechanisms for protecting NLU models against other types of attacks. In “Canary extraction in natural language understanding models”, which we will present at ACL 2022, we study the vulnerability of text classification models to a certain kind of white-box attack called a model inversion attack (ModIvA), where a fictional attack has access to the entire set of model parameters and intends to retrieve examples used during training. Existing model inversion techniques are applied to models with either continuous inputs or continuous outputs. In our work, we adopt a similar approach to text classification tasks where both inputs and outputs are discrete.

As new model architectures are developed that might display new types of vulnerabilities, we will continue innovating efficient ways of protecting our customers’ privacy.

Upcoming activities

2. Federated Learning

The idea behind federated learning (FL) is that, during the training of an ML model, part of the computation is delegated to customers’ devices, leveraging the processing power of those devices while avoiding the centralization of privacy-sensitive datasets. Each device modifies a common, shared model according to locally stored data, then sends an updated model to a central server that aggregates model updates and sends a new shared model to all the devices. At each round, the central server randomly selects a subset of active devices and requests that they perform updates.

Federated Learning Animation.gif
With federated learning, devices send model updates, not data, to a central server.

In the past year, we have made progress toward more-efficient FL and adapted common FL techniques to the industrial setting. For instance, in “Learnings from federated learning in the real world”, which we will present at ICASSP this year, we explore device selection strategies that differ from the standard uniform selection. In particular, we present the first study of device selection based on device “activity” — i.e., the number of available training samples.

These simple selection strategies are lightweight compared to existing methods, which require heavy computation from all the devices. They are thus more suitable to industrial applications, where millions of devices are involved. We study two different settings: the standard “static” setting, where all the data are available at once, and the more realistic “continual” setting, where customers generate new data over time, and past examples might have to be deleted to save storage space. Our experiments on training a language model with FL show that non-uniform sampling outperforms uniform sampling when applied to real-world data, for both the static and continual settings.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

We also expanded our understanding of FL for natural-language processing (NLP) and, in the process, made FL more accessible to the NLP community. In “FedNLP: A research platform for federated learning in natural language processing”, which will be presented later this year at NAACL, we and our colleagues at the University of Southern California and FedML systematically compare the most popular FL algorithms for four mainstream NLP tasks. We also present different methods to generate dataset partitions that are not independent and identically distributed (IID), as real-world FL methods must be robust against shifts in the distributions of the data used to train ML models.

Our analysis reveals that there is still a large gap between centralized and decentralized training under various settings, and we highlight several directions in which FL for NLP can advance. The paper represents Amazon’s contribution to the open-source framework FedNLP, which is capable of evaluating, analyzing, and developing FL methods for NLP. The codebase contains non-IID partitioning methods, enabling easy experimentation to advance the state of FL research for NLP.

We also designed methods to account for the naturally heterogeneous character of customer-generated data and applied FL to a wide variety of NLP tasks. We are aware that FL still presents many challenges, such as how to do evaluation when access to data is removed, on-device label generation for supervised tasks, and privacy-preserving communication between the server and the different devices. We are actively addressing each of these and plan to leverage our findings to improve FL-based model training and enhance associated capabilities such as analytics and model evaluation.

Upcoming activities

3. Fairness in ML

Natural-language-processing applications’ increased reliance on large language models trained on intrinsically biased web-scale corpora has amplified the importance of accurate fairness metrics and procedures for building more robust models.

In “On the intrinsic and extrinsic fairness evaluation metrics for contextualized language representations”, which we are presenting at ACL 2022, we compare two families of fairness metrics — namely extrinsic and intrinsic — that are widely used for language models. Intrinsic metrics directly probe into the fairness of language models, while extrinsic metrics evaluate the fairness of a whole system through predictions on downstream tasks.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

For example, the contextualized embedding association test (CEAT), an intrinsic metric, measures bias through word embedding distances in semantic vector spaces, and the extrinsic metric HateXPlain measures the bias in a downstream hate speech detection system.

Our experiments show that inconsistencies between intrinsic and extrinsic metrics often reflect inconsistencies between the datasets used to evaluate them, and a clear understanding of bias in ML models requires more careful alignment of evaluation data. The results we report in the paper can help guide the NLP community as to how to best conduct fairness evaluations.

We have also designed new measures of fairness that are adapted to language-processing applications. In “Measuring fairness of text classifiers via prediction sensitivity”, which we will present at ACL 2022, we looked at sensitivity to perturbations of input as a way to measure fairness in ML models. The metric attempts to quantify the extent to which a single prediction depends on an input feature that encodes membership in an underrepresented group.

Accumulated prediction sensitivity.png
Our new bias measure, accumulated prediction sensitivity, combines the outputs of tow models, a task classifier (TC) and a protected status model (PSM).

We provide a theoretical analysis of our formulation and show a statistically significant difference between our metric’s correlation with the human notion of fairness and the existing counterfactual fairness metric’s.

Finally, we proposed a method to mitigate the biases of large language models during knowledge distillation, in which a smaller, more efficient model is trained to match the language model’s output on a particular task. Because large language models are trained on public texts, they can be biased in multiple ways, including the unfounded association of male or female genders with gender-neutral professions.

Distillation examples.png
Examples of texts generated by language models in response to gendered prompts before and after the application of our distillation method.

In another ACL paper, “Mitigating gender bias in distilled language models via counterfactual role reversal”, we introduce two modifications to the standard distillation mechanisms: data augmentation and teacher prediction perturbation.

We use our method to distill a GPT-2 language model for a text-generation task and demonstrate a substantial reduction in gender disparity, with only a minor reduction in utility. Interestingly, we find that reduced disparity in open-ended text generation may not necessarily lead to fairness on other downstream tasks. This finding underscores the importance of evaluating language model fairness along multiple metrics and tasks.

Our work on fairness in ML for NLP applications should help enable models that are more robust against the inherent biases of text datasets. There remain plenty of challenges in this field, but we strive to build models that offer the same experience to any customer, wherever and however they choose to interact with Alexa.

Upcoming activities

Related content

US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.