Advances in trustworthy machine learning at Alexa AI

The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

At Amazon, we take the protection of customer data very seriously. We are also committed to eliminating the biases that can exist in off-the-shelf language models — such as GPT-3 and RoBERTa — that are the basis of most modern natural-language processing. Trained on public texts, these language models are known to reflect the biases implicit in those texts.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

These two topics — privacy protection and fairness — are at the core of trustworthy machine learning, an important area of research at Alexa AI. In 2021, we made contributions in the following areas:

  • Privacy-preserving machine learningDifferential privacy provides a rigorous way to quantify the privacy of machine learning models. We investigated vulnerabilities presented in the differential-privacy literature and propose computationally efficient mechanisms for protecting against them.
  • Federated learning: Federated learning (FL) is a distributed-training technique that keeps customer data on-device. Devices send only model parameter updates to the cloud, not raw data. We studied several FL challenges arising in an industrial setting.
  • Fairness in machine learning: Machine learning (ML) models should perform equally well regardless of who’s using them. But even knowing how to quantify fairness is a challenge. We introduced measures of fairness and methods to mitigate bias in ML models.
Counterfactuals.png
To reduce binary-gender disparity in a distilled GPT-2 language model, we introduce counterfactual examples, in which binary genders in real-world training examples are swapped.

Below, we summarize our research in these areas, which will be presented at ACL and ICASSP later this year. We also invite readers to participate in workshops and sessions we are organizing at NAACL 2022 and Interspeech 2022.

1. Privacy-preserving ML

The intuition behind differential privacy (DP) is that access to the outputs of a model should not provide any hint about what inputs were used to train the model. DP quantifies that intuition as a difference (in probabilities) between the outputs of a model trained on a given dataset and the outputs of the same model trained on the same dataset after a single input is removed.

One way to meet a DP privacy guarantee is to add some noise to the model parameters during training in order to obfuscate their relationship to training data. But this can compromise accuracy. The so-called privacy/utility tradeoff appears in every DP application.

Another side effect of adding a DP mechanism is increased training time. Given that training natural-language-understanding (NLU) models with large volumes of data can be prohibitively slow and that industry standards require fast training and deployment — e.g., when new features are being released — we developed a training method that meets DP requirements but remains efficient. We describe the method in a paper we’re presenting at this year’s ICASSP, “An efficient DP-SGD mechanism for large scale NLP models”.

In this work, we study the most popular DP mechanism for deep neural networks, DP-SGD, and build a computationally efficient alternative, eDP-SGD, in which we use a batch-processing scheme that leverages the GPU architecture and automates part of the hyperparameter-tuning process. While both DP-SGD and eDP-SGD provide the same privacy guarantees, we show that the training time for our mechanism is very similar to its non-DP counterpart’s. The original DP-SGD extends training time as much as 130-fold.

Related content
ADePT model transforms the texts used to train natural-language-understanding models while preserving semantic coherence.

Since we did our study, researchers have developed methods with stronger theoretical DP guarantees than the ones we impose in our paper, but our approach is consistent with those methods. Overall, this work makes DP more generally accessible and helps us integrate NLU models with DP guarantees into our production systems, where new models are frequently released, and a significant increase in training time is prohibitive.

While DP provides theoretical privacy guarantees, we are also interested in practical guarantees, i.e., measuring the amount of information that could potentially leak from a given model. In addition to the performance and training time of eDP-SGD, we also studied the correlation between theoretical and practical privacy guarantees. We measured practical privacy leakage using the most common method in the field, the success rate of membership inference attacks on a given model. Our experiments provide a general picture of how to optimize the privacy/utility trade-off using DP techniques for NLU models.

We also expanded the set of mechanisms for protecting NLU models against other types of attacks. In “Canary extraction in natural language understanding models”, which we will present at ACL 2022, we study the vulnerability of text classification models to a certain kind of white-box attack called a model inversion attack (ModIvA), where a fictional attack has access to the entire set of model parameters and intends to retrieve examples used during training. Existing model inversion techniques are applied to models with either continuous inputs or continuous outputs. In our work, we adopt a similar approach to text classification tasks where both inputs and outputs are discrete.

As new model architectures are developed that might display new types of vulnerabilities, we will continue innovating efficient ways of protecting our customers’ privacy.

Upcoming activities

2. Federated Learning

The idea behind federated learning (FL) is that, during the training of an ML model, part of the computation is delegated to customers’ devices, leveraging the processing power of those devices while avoiding the centralization of privacy-sensitive datasets. Each device modifies a common, shared model according to locally stored data, then sends an updated model to a central server that aggregates model updates and sends a new shared model to all the devices. At each round, the central server randomly selects a subset of active devices and requests that they perform updates.

Federated Learning Animation.gif
With federated learning, devices send model updates, not data, to a central server.

In the past year, we have made progress toward more-efficient FL and adapted common FL techniques to the industrial setting. For instance, in “Learnings from federated learning in the real world”, which we will present at ICASSP this year, we explore device selection strategies that differ from the standard uniform selection. In particular, we present the first study of device selection based on device “activity” — i.e., the number of available training samples.

These simple selection strategies are lightweight compared to existing methods, which require heavy computation from all the devices. They are thus more suitable to industrial applications, where millions of devices are involved. We study two different settings: the standard “static” setting, where all the data are available at once, and the more realistic “continual” setting, where customers generate new data over time, and past examples might have to be deleted to save storage space. Our experiments on training a language model with FL show that non-uniform sampling outperforms uniform sampling when applied to real-world data, for both the static and continual settings.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

We also expanded our understanding of FL for natural-language processing (NLP) and, in the process, made FL more accessible to the NLP community. In “FedNLP: A research platform for federated learning in natural language processing”, which will be presented later this year at NAACL, we and our colleagues at the University of Southern California and FedML systematically compare the most popular FL algorithms for four mainstream NLP tasks. We also present different methods to generate dataset partitions that are not independent and identically distributed (IID), as real-world FL methods must be robust against shifts in the distributions of the data used to train ML models.

Our analysis reveals that there is still a large gap between centralized and decentralized training under various settings, and we highlight several directions in which FL for NLP can advance. The paper represents Amazon’s contribution to the open-source framework FedNLP, which is capable of evaluating, analyzing, and developing FL methods for NLP. The codebase contains non-IID partitioning methods, enabling easy experimentation to advance the state of FL research for NLP.

We also designed methods to account for the naturally heterogeneous character of customer-generated data and applied FL to a wide variety of NLP tasks. We are aware that FL still presents many challenges, such as how to do evaluation when access to data is removed, on-device label generation for supervised tasks, and privacy-preserving communication between the server and the different devices. We are actively addressing each of these and plan to leverage our findings to improve FL-based model training and enhance associated capabilities such as analytics and model evaluation.

Upcoming activities

3. Fairness in ML

Natural-language-processing applications’ increased reliance on large language models trained on intrinsically biased web-scale corpora has amplified the importance of accurate fairness metrics and procedures for building more robust models.

In “On the intrinsic and extrinsic fairness evaluation metrics for contextualized language representations”, which we are presenting at ACL 2022, we compare two families of fairness metrics — namely extrinsic and intrinsic — that are widely used for language models. Intrinsic metrics directly probe into the fairness of language models, while extrinsic metrics evaluate the fairness of a whole system through predictions on downstream tasks.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

For example, the contextualized embedding association test (CEAT), an intrinsic metric, measures bias through word embedding distances in semantic vector spaces, and the extrinsic metric HateXPlain measures the bias in a downstream hate speech detection system.

Our experiments show that inconsistencies between intrinsic and extrinsic metrics often reflect inconsistencies between the datasets used to evaluate them, and a clear understanding of bias in ML models requires more careful alignment of evaluation data. The results we report in the paper can help guide the NLP community as to how to best conduct fairness evaluations.

We have also designed new measures of fairness that are adapted to language-processing applications. In “Measuring fairness of text classifiers via prediction sensitivity”, which we will present at ACL 2022, we looked at sensitivity to perturbations of input as a way to measure fairness in ML models. The metric attempts to quantify the extent to which a single prediction depends on an input feature that encodes membership in an underrepresented group.

Accumulated prediction sensitivity.png
Our new bias measure, accumulated prediction sensitivity, combines the outputs of tow models, a task classifier (TC) and a protected status model (PSM).

We provide a theoretical analysis of our formulation and show a statistically significant difference between our metric’s correlation with the human notion of fairness and the existing counterfactual fairness metric’s.

Finally, we proposed a method to mitigate the biases of large language models during knowledge distillation, in which a smaller, more efficient model is trained to match the language model’s output on a particular task. Because large language models are trained on public texts, they can be biased in multiple ways, including the unfounded association of male or female genders with gender-neutral professions.

Distillation examples.png
Examples of texts generated by language models in response to gendered prompts before and after the application of our distillation method.

In another ACL paper, “Mitigating gender bias in distilled language models via counterfactual role reversal”, we introduce two modifications to the standard distillation mechanisms: data augmentation and teacher prediction perturbation.

We use our method to distill a GPT-2 language model for a text-generation task and demonstrate a substantial reduction in gender disparity, with only a minor reduction in utility. Interestingly, we find that reduced disparity in open-ended text generation may not necessarily lead to fairness on other downstream tasks. This finding underscores the importance of evaluating language model fairness along multiple metrics and tasks.

Our work on fairness in ML for NLP applications should help enable models that are more robust against the inherent biases of text datasets. There remain plenty of challenges in this field, but we strive to build models that offer the same experience to any customer, wherever and however they choose to interact with Alexa.

Upcoming activities

Related content

US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Herndon
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We research and develop advanced state-of-the-art speech and language modeling technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists.
CN, 31, Shanghai
The AWS Shanghai AI Lab is looking for a passionate, talented, and inventive staff in all AI domains with a strong machine learning background as an Applied Scientist. Founded in 2018, the Shanghai Lab has been an innovation center of for long-term research projects across domains as machine learning, computer vision, natural language processing, and open-source AI system. Meanwhile, these incubated projects power products across various AWS services. As part of the lablet, you will take a leadership role and join a vibrant team with a diverse set of expertise in both machine learning and applicational domains. You will work on state-of-the-art solutions on fundamental research problems with other world-class scientists and engineers in AWS around the globe and across the boarders. You will have the responsibility to design and innovate solutions to our customers. You will build models to tame large amount of data, achieve industry-level scalability and efficiency, and along the way rapidly grow and build the team.
US, WA, Bellevue
Amazon is looking for an outstanding Senior Economist to help build next generation selection/assortment systems. On the Specialized Selection team within the Supply Chain Optimization Technologies (SCOT) organization, we own the selection to determine which products Amazon offers in our fastest delivery programs. We build tools and systems that enable our partners and business owners to scale themselves by leveraging our problem domain expertise, focusing instead on introspecting our outputs and iteratively helping us improve our ML models rather than hand-managing their assortment. We partner closely with our business stakeholders as we work to develop state-of-the-art, scalable, automated selection. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Some critical research areas in our space include modeling substitutability between similar products, incorporating basket awareness and complementarity-aware logic, measuring speed sensitivity of products, modeling network capacity constraints, and supply and demand forecasting. We're looking for a candidate with a background in experiment design and causal analysis to lead studies related to selection and speed. Potential projects include understanding the short-term and long-term customer impact of assortment changes across different speed. As an Senior Economist, you'll build econometric models using our world-class data systems and apply economic theory to solve business problems in a fast-moving environment. You will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. To be successful in this role, you'll need to communicate effectively with product and tech teams, and translate data-driven findings into actionable insights. You'll thrive if you enjoy tackling ambiguous challenges using the economics toolkit and identifying and solving problems at scale. We have a supportive, fast-paced team culture, and we prioritize learning, growth, and helping each other continuously raise the bar. Key job responsibilities - Lead data-driven econometric studies to create future business opportunities - Consult with stakeholders in Selection and other teams to help solve existing business challenges - Independently identify and pursue new opportunities to leverage economic insights - Advise senior leaders and collaborate with other scientists to drive innovation - Support innovative delivery program growth worldwide - Write business and technical documents communicating business context, methods, and results to business leadership and other scientists - Serve as a technical lead and mentor for junior scientists, ensuring a high science bar - Serve as a technical reviewer for our team and related teams, including document and code reviews
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing the design of microwave components for cryogenic environments. Working alongside other scientists and engineers, you will design and validate hardware performing microwave signal conditioning at cryogenic temperatures for AWS quantum processors. Candidates must have a background in both microwave theory and implementation. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development from requirements development to validation. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the signal conditioning of AWS quantum processor systems at cryogenic temperatures. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems across our cryogenic signal chain. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both performance and cost metrics. Research enabling technologies necessary for AWS to produce commercially viable quantum computers. A day in the life As you design and implement cryogenic microwave signal conditioning solutions, from requirements definition to deployment, you will also: Participate in requirements, design, and test reviews and communicate with internal stakeholders. Work cross-functionally to help drive decisions using your unique technical background and skill set. Refine and define standards and processes for operational excellence. Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Vehicle Design and Test team within Flight Sciences is looking for an outstanding engineer to help us rapidly configure, design, analyze, prototype, and test innovative drone vehicles. You’ll be responsible for assessing the Aerodynamics, Performance, and Stability & Control characteristics of vehicle designs. You’ll help build and utilize our suite of Multi-disciplinary Optimization (MDO) tools. You’ll explore new and novel drone vehicle conceptual designs in both focused and wide open design spaces, with the ultimate goal of meeting our customer requirements. You’ll have the opportunity to prototype vehicle designs and support wind tunnel and other testing of vehicle designs. You will directly support the Office of the Chief Program Engineer, and work closely across all vehicle subsystem teams to ensure integrated designs that meet performance, reliability, operability, manufacturing, and cost requirements. About the team Our Flight Sciences Vehicle Design & Test organization includes teams that span the following disciplines: Aerodynamics, Performance, Stability & Control, Configuration & Spatial Integration, Loads, Structures, Mass Properties, Multi-disciplinary Optimization (MDO), Wind Tunnel Testing, Noise Testing, Flight Test Instrumentation, and Rapid Prototyping.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Large Language Models (LLM)? We are embarking on a multi-year journey to improve the shopping experience for customers using Alexa globally. In 2024, we started building all Shopping experiences leveraging LLMs in the US. We create customer-focused solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. We are seeking an Applied Scientist to lead a new, greenfield initiative that shapes the arc of invention with Machine Learning and Large Language Models. Your deliverables will directly impact executive leadership team goals and shape the future of shopping experiences with Alexa. We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, WA, Seattle
The vision for Alexa is to be the world’s best personal assistant. Such an assistant will play a vital role in managing the communication lives of customers, from drafting communications to coordinating with people on behalf of customers. At Alexa Communications, we’re leveraging Generative AI to bring this vision to life. If you’re passionate about building magical experiences for customers, while solving hard, complex technical problems, then this role is for you. You will operate at the intersection of large language models, real time communications, voice and graphical user interfaces, and mixed reality to deliver cutting-edge features for end users. Come join us to invent the future of how millions of customers will communicate with and through their virtual AI assistants. Key job responsibilities The Comms Experience Insights (CXI) team is looking for an experienced, self-driven, analytical, and strategic Data Scientist II. We are looking for an individual who is passionate about tying together huge amounts of data to answer complex stakeholder questions. You should have deep expertise in translating data into meaningful insights through collaboration with Data Engineers and Business Analysts. You should also have extensive experience in model fitting and explaining how the insights derived from those models impact a business. In this role, you will take data curated by a dedicated team of Data Engineers to conduct deep statistical analysis on usage trends. The right candidate will possess excellent business and communication skills, be able to work with business owners to develop and define key business questions, and be able to collaborate with Data Engineers and Business Analysts to analyze data that will answer those questions. The right candidate should have a solid understanding of how to curate the right datasets that can be used to train data models, and the desire to learn and implement new technologies and services to further a scalable, self-service model.