Alexa speech science developments at Interspeech 2022

Research from Alexa Speech covers a range of topics related to end-to-end neural speech recognition and fairness.

Interspeech, the world’s largest and most comprehensive conference on the science and technology of spoken-language processing, took place this week in Incheon, Korea, with Amazon as a platinum sponsor. Amazon Science asked three of Alexa AI’s leading scientists — in the fields of speech, spoken-language-understanding, and text-to-speech — to highlight some of Amazon’s contributions to the conference.

Related content
Methods for learning from noisy data, using phonetic embeddings to improve entity resolution, and quantization-aware training are a few of the highlights.

In this installment, senior principal scientist Andreas Stolcke selects papers from Alexa AI’s speech science organization, focusing on two overarching themes in recent research on speech-enabled AI: end-to-end neural speech recognition and fairness.

End-to-end neural speech recognition

Traditionally, speech recognition systems have included components specialized for different aspects of linguistic knowledge: acoustic models to capture the correspondence between speech sounds and acoustic waveforms (phonetics), pronunciation models to map those sounds to words, and language models (LMs) to capture higher-order properties such as syntax, semantics, and dialogue context.

All these models are trained on separate data and combined using graph and search algorithms, to infer the most probable sequence of words corresponding to acoustic input. The latest versions of these systems employ neural networks for individual components, typically in the acoustic and language models, while still relying on non-neural methods for model integration; they are therefore known as “hybrid” automatic-speech-recognition (ASR) systems.

While the hybrid ASR approach is structured and modular, it also makes it hard to model the ways in which acoustic, phonetic, and word-level representations interact and to optimize the recognition system end to end. For these reasons, much recent research in ASR has focused on so-called end-to-end or all-neural recognition systems, which infer a sequence of words directly from acoustic inputs.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

End-to-end ASR systems use deep multilayered neural architectures that can be optimized end to end for recognition accuracy. While they do require large amounts of data and computation for training, once trained, they offer a simplified computational architecture for inference, as well as superior performance.

Alexa’s ASR employs end-to-end as its core algorithm, both in the cloud and on-device. Across the industry and in academic research, end-to-end architectures are still being improved to achieve better accuracy, to require less computation and/or latency, or to mitigate the lack of modularity that makes it challenging to inject external (e.g., domain-specific) knowledge at run time.

Alexa AI papers at Interspeech address several open problems in end-to-end ASR, and we summarize a few of those papers here.

In “ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition”, Martin Radfar and coauthors propose a new variant of the popular recurrent-neural-network-transducer (RNN-T) end-to-neural architecture. One of their goals is to preserve the property of causal processing, meaning that the model output depends only on past and current (but not future) inputs, which enables streaming ASR. At the same time, they want to improve the model’s ability to capture long-term contextual information.

ConvRNN.png
A high-level block diagram of ConvRNN-T.

To achieve both goals, they augment the vanilla RNN-T with two distinct convolutional (CNN) front ends: a standard one for encoding correlations localized in time and a novel “global CNN” encoder that is designed to capture long-term correlations by summarizing activations over the entire utterance up to the current time step (while processing utterances incrementally through time).

The authors show that the resulting ConvRNN-T gives superior accuracy compared to other proposed neural streaming ASR architectures, such as the basic RNN-T, Conformer, and ContextNet.

Another concern with end-to-end ASR models is computational efficiency, especially since the unified neural architecture makes these models very attractive for on-device deployment, where compute cycles and (for mobile devices) power are at a premium.

In their paper “Compute cost amortized Transformer for streaming ASR”, Yi Xie and colleagues exploit the intuitive observation that the amount of computation a model performs should vary as a function of the difficulty of the task; for instance, input in which noise or an accent causes ambiguity may require more computation than a clean input with a mainstream accent. (We may think of this as the ASR model “thinking harder” in places where the words are more difficult to discern.)

Related content
A new approach to determining the “channel configuration” of convolutional neural nets improves accuracy while maintaining runtime efficiency.

The researchers achieve this with a very elegant method that leverages the integrated neural structure of the model. Their starting point is a Transformer-based ASR system, consisting of multiple stacked layers of multiheaded self-attention (MHA) and feed-forward neural blocks. In addition, they train “arbitrator” networks that look at the acoustic input (and, optionally, also at intermediate block outputs) to toggle individual components on or off.

Because these component blocks have “skip connections” that combine their outputs with the outputs of earlier layers, they are effectively optional for the overall computation to proceed. A block that is toggled off for a given input frame saves all the computation normally carried out by that block, producing a zero vector output. The following diagram shows the structure of both the elementary Transformer building block and the arbitrator that controls it:

Arbitrator:Transformer backbone.png
Illustration of the arbitrator and Transformer backbone of each block. The lightweight arbitrator toggles whether to evaluate subcomponents during the forward pass.

The arbitrator networks themselves are small enough that they do not contribute significant additional computation. What makes this scheme workable and effective, however, is that both the Transformer assemblies and the arbitrators that control them can be trained jointly, with dual goals: to perform accurate ASR and to minimize the overall amount of computation. The latter is achieved by adding a term to the training objective function that rewards reducing computation. Dialing a hyperparameter up or down selects the desired balance between accuracy and computation.

Related content
Branching encoder networks make operation more efficient, while “neural diffing” reduces bandwidth requirements for model updates.

The authors show that their method can achieve a 60% reduction in computation with only a minor (3%) increase in ASR error. Their cost-amortized Transformer proves much more effective than a benchmark method that constrains the model to attend only to sliding windows over the input, which yields only 13% savings and an error increase of almost three times as much.

Finally, in this short review of end-to-end neural ASR advances, we look at ways to recognize speech from more than one speaker, while keeping track of who said what (also known as speaker-attributed ASR).

This has traditionally been done with modular systems that perform ASR and, separately, perform speaker diarization, i.e., labeling stretches of audio according to who is speaking. However, here, too, neural models have recently brought advances and simplification, by integrating these two tasks in a single end-to-end neural model.

In their paper “Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech”, Ilya Sklyar and colleagues not only integrate ASR and segmentation-by-speaker but do so while processing inputs incrementally. Streaming multispeaker ASR with low latency is a key technology to enable voice assistants to interact with customers in collaborative settings. Sklyar’s system does this with a generalization of the RNN-T architecture that keeps track of turn-taking between multiple speakers, up to two of whom can be active simultaneously. The researchers’ separator-transducer-segmenter model is depicted below:

Separator-transducer-segmenter.png
Separator-transducer-segmenter. The tokens <sot> and <eot> represent the start of turn and end of turn. Model blocks with the same color have tied parameters, and transcripts in the color-matched boxes belong to the same speaker.

A key element that yields improvements over an earlier approach is the use of dedicated tokens to recognize both starts and ends of speaker turns, for what the authors call “start-pointing” and “end-pointing”. (End-pointing is a standard feature of many interactive ASR systems necessary to predict when a talker is done.) Beyond representing the turn-taking structure in this symbolic way, the model is also penalized during training for taking too long to output these markers, in order to improve the latency and temporal accuracy of the outputs.

Fairness in the performance of speech-enabled AI

The second theme we’d like to highlight, and one that is receiving increasing attention in speech and other areas of AI, is performance fairness: the desire to avert large differences in accuracy across different cohorts of users or on content associated with protected groups. As an example, concerns about this type of fairness gained prominence with demonstrations that certain computer vision algorithms performed poorly for certain skin tones, in part due to underrepresentation in the training data.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

There’s a similar concern about speech-based AI, with speech properties varying widely as a function of speaker background and environment. A balanced representation in training sets is hard to achieve, since the speakers using commercial products are largely self-selected, and speaker attributes are often unavailable for many reasons, privacy among them. This topic is also the subject of a special session at Interspeech, Inclusive and Fair Speech Technologies, which several Alexa AI scientists are involved in as co-organizers and presenters.

One of the special-session papers, “Reducing geographic disparities in automatic speech recognition via elastic weight consolidation”, by Viet Anh Trinh and colleagues, looks at how geographic location within the U.S. affects ASR accuracy and how models can be adapted to narrow the gap for the worst-performing regions. Here and elsewhere, a two-step approach is used: first, subsets of speakers with higher-than-average error rates are identified; then a mitigation step attempts to improve performance for those cohorts. Trinh et al.’s method identifies the cohorts by partitioning the speakers according to their geographic longitude and latitude, using a decision-tree-like algorithm that maximizes the word-error-rate (WER) differences between resulting regions:

Reducing geographical disparities.png
A map of 126 regions identified by the clustering tree. The color does not indicate a specific word error rate (WER), but regions with the same color do have the same WER.

Next, the regions are ranked by their average WERs; data from the highest-error regions is identified for performance improvement. To achieve that, the researchers use fine-tuning to optimize the model parameters for the targeted regions, while also employing a technique called elastic weight consolidation (EWC) to minimize performance degradation on the remaining regions.

This is important to prevent a phenomenon known as “catastrophic forgetting”, in which neural models degrade substantially on prior training data during fine-tuning. The idea is to quantify the influence that different dimensions of the parameter space have on the overall performance and then avoid large variations along those dimensions when adapting to a data subset. This approach decreases the WER mean, maximum, and variance across regions and even the overall WER (including the regions not fine-tuned on), beating out several baseline methods for model adaptation.

Pranav Dheram et al., in their paper “Toward fairness in speech recognition: Discovery and mitigation of performance disparities”, look at alternative methods for identifying underperforming speaker cohorts. One approach is to use human-defined geographic regions as given by postal (a.k.a. zip) codes, in combination with demographic information from U.S. census data, to partition U.S. geography.

Related content
NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

Zip codes are sorted into binary partitions by majority demographic attributes, so as to maximize WER discrepancies. The partition with higher WER is then targeted for mitigations, an approach similar to that adopted in the Trinh et al. paper. However, this approach is imprecise (since it lumps together speakers by zip code) and limited to available demographic data, so it generalizes poorly to other geographies.

Alternatively, Dheram et al. use speech characteristics learned by a neural speaker identification model to group speakers. These “speaker embedding vectors” are clustered, reflecting the intuition that speakers who sound similar will tend to have similar ASR difficulty.

Subsequently, these virtual speaker regions (not individual identities) can be ranked by difficulty and targeted for mitigation, without relying on human labeling, grouping, or self-identification of speakers or attributes. As shown in the table below, the automatic approach identifies a larger gap in ASR accuracy than the “geo-demographic” approach, while at the same time targeting a larger share of speakers for performance mitigation:

Cohort discovery

WER gap (%)

Bottom-cohort share (%)

Geodemographic

Automatic

41.7

65.0

0.8

10.0

The final fairness-themed paper we highlight explores yet another approach to avoiding performance disparities, known as adversarial reweighting (ARW). Instead of relying on explicit partitioning of the input space, this approach assigns continuous weights to the training instances (as a function of input features), with the idea that harder examples get higher weights and thereby exert more influence on the performance optimization.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

Secondly, ARW more tightly interleaves, and iterates, the (now weighted) cohort identification and mitigation steps. Mathematically, this is formalized as a min-max optimization algorithm that alternates between maximizing the error by changing the sample weights (hence “adversarial”) and minimizing the weighted verification error by adjusting the target model parameters.

ARW was designed for group fairness in classification and regression tasks that take individual data points as inputs. “Adversarial reweighting for speaker verification fairness”, by Minho Jin et al., looks at how the concept can be applied to a classification task that depends on pairs of input samples, i.e., checking whether two speech samples come from the same speaker. Solving this problem could help make a voice-based assistant more reliable at personalization and other functions that require knowing who is speaking.

The authors look at several ways to adapt ARW to learning similarity among speaker embeddings. The method that ultimately worked best assigns each pair of input samples an adversarial weight that is the sum of individual sample weights (thereby reducing the dimensionality of the weight prediction). The individual sample weights are also informed by which region of the speaker embedding space a sample falls into (as determined by unsupervised k-means clustering, the same technique used in Dheram et al.’s automatic cohort-identification method).

Computing ARW weights.png
Computing adversarial-reweighting (ARW) weights.

I omit the details, but once the pairwise (PW) adversarial weights are formalized in this way, we can insert them into the loss function for metric learning, which is the basis of training a speaker verification model. Min-max optimization can then take turns training the adversary network that predicts the weights and optimizing the speaker embedding extractor that learns speaker similarity.

On a public speaker verification corpus, the resulting system reduced overall equal-error rate by 7.6%, while also reducing the gap between genders by 17%. It also reduced the error variability across different countries of origin, by nearly 10%. Note that, as in the case of the Trinh et al. ASR fairness paper, fairness mitigation improves both performance disparities and overall accuracy.

This concludes our thematic highlights of Alexa Speech Interspeech papers. Note that Interspeech covers much more than speech and speaker recognition. Please check out companion pieces that feature additional work, drawn from technical areas that are no less essential for a functioning speech-enabled AI assistant: natural-language understanding and speech synthesis.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, WA, Bellevue
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The Alexa Sensitive Content Intelligence (ASCI) team owns the Responsible AI and customer feedback charters in Alexa+ and Classic Alexa across all device endpoints, modalities and languages. The mission of our team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, (3) build customer trust through generating appropriate interactions on sensitive topics, and (4) analyze customer feedback to gain insight and drive continuous improvement loops. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Are you passionate to join an innovative team of scientists and engineers who use machine learning and AI techniques to create state-of-the-art solutions to help seller succeed on Amazon? The Selling Partner Growth org is looking for a Senior Applied Scientist to lead us on our mission to understand demand side signals on Amazon, and empower sellers to grow their business and provide a great customer experience. As a Senior Applied Scientist on our team of scientists and engineers, you will have opportunities to create significant impact on our systems, our business and most importantly, our customers as we take on challenges that can revolutionize the e-commerce industry. You will identify specific and actionable opportunities to solve business problems, propose state-of-the-art solutions and collaborate with engineering, and business teams for future innovation. You need to be a great translation between ambiguous business domains and rigorous scientific solutions, an expert at inventing and simplify, and a good communicator to surface insights and recommendations to audiences of varying levels of technical sophistication. Major responsibilities - Use machine learning and AI techniques to create scalable seller-facing solutions - Analyze and extract relevant information from large amounts of Amazon's historical business data to help automate and optimize key processes - Design, development and evaluation of highly innovative models - Work closely with software engineering teams to drive real-time model implementations and new feature creations To know more about Amazon science, Please visit https://www.amazon.science