Alexa speech science developments at Interspeech 2022

Research from Alexa Speech covers a range of topics related to end-to-end neural speech recognition and fairness.

Interspeech, the world’s largest and most comprehensive conference on the science and technology of spoken-language processing, took place this week in Incheon, Korea, with Amazon as a platinum sponsor. Amazon Science asked three of Alexa AI’s leading scientists — in the fields of speech, spoken-language-understanding, and text-to-speech — to highlight some of Amazon’s contributions to the conference.

Related content
Methods for learning from noisy data, using phonetic embeddings to improve entity resolution, and quantization-aware training are a few of the highlights.

In this installment, senior principal scientist Andreas Stolcke selects papers from Alexa AI’s speech science organization, focusing on two overarching themes in recent research on speech-enabled AI: end-to-end neural speech recognition and fairness.

End-to-end neural speech recognition

Traditionally, speech recognition systems have included components specialized for different aspects of linguistic knowledge: acoustic models to capture the correspondence between speech sounds and acoustic waveforms (phonetics), pronunciation models to map those sounds to words, and language models (LMs) to capture higher-order properties such as syntax, semantics, and dialogue context.

All these models are trained on separate data and combined using graph and search algorithms, to infer the most probable sequence of words corresponding to acoustic input. The latest versions of these systems employ neural networks for individual components, typically in the acoustic and language models, while still relying on non-neural methods for model integration; they are therefore known as “hybrid” automatic-speech-recognition (ASR) systems.

While the hybrid ASR approach is structured and modular, it also makes it hard to model the ways in which acoustic, phonetic, and word-level representations interact and to optimize the recognition system end to end. For these reasons, much recent research in ASR has focused on so-called end-to-end or all-neural recognition systems, which infer a sequence of words directly from acoustic inputs.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

End-to-end ASR systems use deep multilayered neural architectures that can be optimized end to end for recognition accuracy. While they do require large amounts of data and computation for training, once trained, they offer a simplified computational architecture for inference, as well as superior performance.

Alexa’s ASR employs end-to-end as its core algorithm, both in the cloud and on-device. Across the industry and in academic research, end-to-end architectures are still being improved to achieve better accuracy, to require less computation and/or latency, or to mitigate the lack of modularity that makes it challenging to inject external (e.g., domain-specific) knowledge at run time.

Alexa AI papers at Interspeech address several open problems in end-to-end ASR, and we summarize a few of those papers here.

In “ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition”, Martin Radfar and coauthors propose a new variant of the popular recurrent-neural-network-transducer (RNN-T) end-to-neural architecture. One of their goals is to preserve the property of causal processing, meaning that the model output depends only on past and current (but not future) inputs, which enables streaming ASR. At the same time, they want to improve the model’s ability to capture long-term contextual information.

ConvRNN.png
A high-level block diagram of ConvRNN-T.

To achieve both goals, they augment the vanilla RNN-T with two distinct convolutional (CNN) front ends: a standard one for encoding correlations localized in time and a novel “global CNN” encoder that is designed to capture long-term correlations by summarizing activations over the entire utterance up to the current time step (while processing utterances incrementally through time).

The authors show that the resulting ConvRNN-T gives superior accuracy compared to other proposed neural streaming ASR architectures, such as the basic RNN-T, Conformer, and ContextNet.

Another concern with end-to-end ASR models is computational efficiency, especially since the unified neural architecture makes these models very attractive for on-device deployment, where compute cycles and (for mobile devices) power are at a premium.

In their paper “Compute cost amortized Transformer for streaming ASR”, Yi Xie and colleagues exploit the intuitive observation that the amount of computation a model performs should vary as a function of the difficulty of the task; for instance, input in which noise or an accent causes ambiguity may require more computation than a clean input with a mainstream accent. (We may think of this as the ASR model “thinking harder” in places where the words are more difficult to discern.)

Related content
A new approach to determining the “channel configuration” of convolutional neural nets improves accuracy while maintaining runtime efficiency.

The researchers achieve this with a very elegant method that leverages the integrated neural structure of the model. Their starting point is a Transformer-based ASR system, consisting of multiple stacked layers of multiheaded self-attention (MHA) and feed-forward neural blocks. In addition, they train “arbitrator” networks that look at the acoustic input (and, optionally, also at intermediate block outputs) to toggle individual components on or off.

Because these component blocks have “skip connections” that combine their outputs with the outputs of earlier layers, they are effectively optional for the overall computation to proceed. A block that is toggled off for a given input frame saves all the computation normally carried out by that block, producing a zero vector output. The following diagram shows the structure of both the elementary Transformer building block and the arbitrator that controls it:

Arbitrator:Transformer backbone.png
Illustration of the arbitrator and Transformer backbone of each block. The lightweight arbitrator toggles whether to evaluate subcomponents during the forward pass.

The arbitrator networks themselves are small enough that they do not contribute significant additional computation. What makes this scheme workable and effective, however, is that both the Transformer assemblies and the arbitrators that control them can be trained jointly, with dual goals: to perform accurate ASR and to minimize the overall amount of computation. The latter is achieved by adding a term to the training objective function that rewards reducing computation. Dialing a hyperparameter up or down selects the desired balance between accuracy and computation.

Related content
Branching encoder networks make operation more efficient, while “neural diffing” reduces bandwidth requirements for model updates.

The authors show that their method can achieve a 60% reduction in computation with only a minor (3%) increase in ASR error. Their cost-amortized Transformer proves much more effective than a benchmark method that constrains the model to attend only to sliding windows over the input, which yields only 13% savings and an error increase of almost three times as much.

Finally, in this short review of end-to-end neural ASR advances, we look at ways to recognize speech from more than one speaker, while keeping track of who said what (also known as speaker-attributed ASR).

This has traditionally been done with modular systems that perform ASR and, separately, perform speaker diarization, i.e., labeling stretches of audio according to who is speaking. However, here, too, neural models have recently brought advances and simplification, by integrating these two tasks in a single end-to-end neural model.

In their paper “Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech”, Ilya Sklyar and colleagues not only integrate ASR and segmentation-by-speaker but do so while processing inputs incrementally. Streaming multispeaker ASR with low latency is a key technology to enable voice assistants to interact with customers in collaborative settings. Sklyar’s system does this with a generalization of the RNN-T architecture that keeps track of turn-taking between multiple speakers, up to two of whom can be active simultaneously. The researchers’ separator-transducer-segmenter model is depicted below:

Separator-transducer-segmenter.png
Separator-transducer-segmenter. The tokens <sot> and <eot> represent the start of turn and end of turn. Model blocks with the same color have tied parameters, and transcripts in the color-matched boxes belong to the same speaker.

A key element that yields improvements over an earlier approach is the use of dedicated tokens to recognize both starts and ends of speaker turns, for what the authors call “start-pointing” and “end-pointing”. (End-pointing is a standard feature of many interactive ASR systems necessary to predict when a talker is done.) Beyond representing the turn-taking structure in this symbolic way, the model is also penalized during training for taking too long to output these markers, in order to improve the latency and temporal accuracy of the outputs.

Fairness in the performance of speech-enabled AI

The second theme we’d like to highlight, and one that is receiving increasing attention in speech and other areas of AI, is performance fairness: the desire to avert large differences in accuracy across different cohorts of users or on content associated with protected groups. As an example, concerns about this type of fairness gained prominence with demonstrations that certain computer vision algorithms performed poorly for certain skin tones, in part due to underrepresentation in the training data.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

There’s a similar concern about speech-based AI, with speech properties varying widely as a function of speaker background and environment. A balanced representation in training sets is hard to achieve, since the speakers using commercial products are largely self-selected, and speaker attributes are often unavailable for many reasons, privacy among them. This topic is also the subject of a special session at Interspeech, Inclusive and Fair Speech Technologies, which several Alexa AI scientists are involved in as co-organizers and presenters.

One of the special-session papers, “Reducing geographic disparities in automatic speech recognition via elastic weight consolidation”, by Viet Anh Trinh and colleagues, looks at how geographic location within the U.S. affects ASR accuracy and how models can be adapted to narrow the gap for the worst-performing regions. Here and elsewhere, a two-step approach is used: first, subsets of speakers with higher-than-average error rates are identified; then a mitigation step attempts to improve performance for those cohorts. Trinh et al.’s method identifies the cohorts by partitioning the speakers according to their geographic longitude and latitude, using a decision-tree-like algorithm that maximizes the word-error-rate (WER) differences between resulting regions:

Reducing geographical disparities.png
A map of 126 regions identified by the clustering tree. The color does not indicate a specific word error rate (WER), but regions with the same color do have the same WER.

Next, the regions are ranked by their average WERs; data from the highest-error regions is identified for performance improvement. To achieve that, the researchers use fine-tuning to optimize the model parameters for the targeted regions, while also employing a technique called elastic weight consolidation (EWC) to minimize performance degradation on the remaining regions.

This is important to prevent a phenomenon known as “catastrophic forgetting”, in which neural models degrade substantially on prior training data during fine-tuning. The idea is to quantify the influence that different dimensions of the parameter space have on the overall performance and then avoid large variations along those dimensions when adapting to a data subset. This approach decreases the WER mean, maximum, and variance across regions and even the overall WER (including the regions not fine-tuned on), beating out several baseline methods for model adaptation.

Pranav Dheram et al., in their paper “Toward fairness in speech recognition: Discovery and mitigation of performance disparities”, look at alternative methods for identifying underperforming speaker cohorts. One approach is to use human-defined geographic regions as given by postal (a.k.a. zip) codes, in combination with demographic information from U.S. census data, to partition U.S. geography.

Related content
NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

Zip codes are sorted into binary partitions by majority demographic attributes, so as to maximize WER discrepancies. The partition with higher WER is then targeted for mitigations, an approach similar to that adopted in the Trinh et al. paper. However, this approach is imprecise (since it lumps together speakers by zip code) and limited to available demographic data, so it generalizes poorly to other geographies.

Alternatively, Dheram et al. use speech characteristics learned by a neural speaker identification model to group speakers. These “speaker embedding vectors” are clustered, reflecting the intuition that speakers who sound similar will tend to have similar ASR difficulty.

Subsequently, these virtual speaker regions (not individual identities) can be ranked by difficulty and targeted for mitigation, without relying on human labeling, grouping, or self-identification of speakers or attributes. As shown in the table below, the automatic approach identifies a larger gap in ASR accuracy than the “geo-demographic” approach, while at the same time targeting a larger share of speakers for performance mitigation:

Cohort discovery

WER gap (%)

Bottom-cohort share (%)

Geodemographic

Automatic

41.7

65.0

0.8

10.0

The final fairness-themed paper we highlight explores yet another approach to avoiding performance disparities, known as adversarial reweighting (ARW). Instead of relying on explicit partitioning of the input space, this approach assigns continuous weights to the training instances (as a function of input features), with the idea that harder examples get higher weights and thereby exert more influence on the performance optimization.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

Secondly, ARW more tightly interleaves, and iterates, the (now weighted) cohort identification and mitigation steps. Mathematically, this is formalized as a min-max optimization algorithm that alternates between maximizing the error by changing the sample weights (hence “adversarial”) and minimizing the weighted verification error by adjusting the target model parameters.

ARW was designed for group fairness in classification and regression tasks that take individual data points as inputs. “Adversarial reweighting for speaker verification fairness”, by Minho Jin et al., looks at how the concept can be applied to a classification task that depends on pairs of input samples, i.e., checking whether two speech samples come from the same speaker. Solving this problem could help make a voice-based assistant more reliable at personalization and other functions that require knowing who is speaking.

The authors look at several ways to adapt ARW to learning similarity among speaker embeddings. The method that ultimately worked best assigns each pair of input samples an adversarial weight that is the sum of individual sample weights (thereby reducing the dimensionality of the weight prediction). The individual sample weights are also informed by which region of the speaker embedding space a sample falls into (as determined by unsupervised k-means clustering, the same technique used in Dheram et al.’s automatic cohort-identification method).

Computing ARW weights.png
Computing adversarial-reweighting (ARW) weights.

I omit the details, but once the pairwise (PW) adversarial weights are formalized in this way, we can insert them into the loss function for metric learning, which is the basis of training a speaker verification model. Min-max optimization can then take turns training the adversary network that predicts the weights and optimizing the speaker embedding extractor that learns speaker similarity.

On a public speaker verification corpus, the resulting system reduced overall equal-error rate by 7.6%, while also reducing the gap between genders by 17%. It also reduced the error variability across different countries of origin, by nearly 10%. Note that, as in the case of the Trinh et al. ASR fairness paper, fairness mitigation improves both performance disparities and overall accuracy.

This concludes our thematic highlights of Alexa Speech Interspeech papers. Note that Interspeech covers much more than speech and speaker recognition. Please check out companion pieces that feature additional work, drawn from technical areas that are no less essential for a functioning speech-enabled AI assistant: natural-language understanding and speech synthesis.

Research areas

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team