Alexa speech science developments at Interspeech 2022

Research from Alexa Speech covers a range of topics related to end-to-end neural speech recognition and fairness.

Interspeech, the world’s largest and most comprehensive conference on the science and technology of spoken-language processing, took place this week in Incheon, Korea, with Amazon as a platinum sponsor. Amazon Science asked three of Alexa AI’s leading scientists — in the fields of speech, spoken-language-understanding, and text-to-speech — to highlight some of Amazon’s contributions to the conference.

Related content
Methods for learning from noisy data, using phonetic embeddings to improve entity resolution, and quantization-aware training are a few of the highlights.

In this installment, senior principal scientist Andreas Stolcke selects papers from Alexa AI’s speech science organization, focusing on two overarching themes in recent research on speech-enabled AI: end-to-end neural speech recognition and fairness.

End-to-end neural speech recognition

Traditionally, speech recognition systems have included components specialized for different aspects of linguistic knowledge: acoustic models to capture the correspondence between speech sounds and acoustic waveforms (phonetics), pronunciation models to map those sounds to words, and language models (LMs) to capture higher-order properties such as syntax, semantics, and dialogue context.

All these models are trained on separate data and combined using graph and search algorithms, to infer the most probable sequence of words corresponding to acoustic input. The latest versions of these systems employ neural networks for individual components, typically in the acoustic and language models, while still relying on non-neural methods for model integration; they are therefore known as “hybrid” automatic-speech-recognition (ASR) systems.

While the hybrid ASR approach is structured and modular, it also makes it hard to model the ways in which acoustic, phonetic, and word-level representations interact and to optimize the recognition system end to end. For these reasons, much recent research in ASR has focused on so-called end-to-end or all-neural recognition systems, which infer a sequence of words directly from acoustic inputs.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

End-to-end ASR systems use deep multilayered neural architectures that can be optimized end to end for recognition accuracy. While they do require large amounts of data and computation for training, once trained, they offer a simplified computational architecture for inference, as well as superior performance.

Alexa’s ASR employs end-to-end as its core algorithm, both in the cloud and on-device. Across the industry and in academic research, end-to-end architectures are still being improved to achieve better accuracy, to require less computation and/or latency, or to mitigate the lack of modularity that makes it challenging to inject external (e.g., domain-specific) knowledge at run time.

Alexa AI papers at Interspeech address several open problems in end-to-end ASR, and we summarize a few of those papers here.

In “ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition”, Martin Radfar and coauthors propose a new variant of the popular recurrent-neural-network-transducer (RNN-T) end-to-neural architecture. One of their goals is to preserve the property of causal processing, meaning that the model output depends only on past and current (but not future) inputs, which enables streaming ASR. At the same time, they want to improve the model’s ability to capture long-term contextual information.

ConvRNN.png
A high-level block diagram of ConvRNN-T.

To achieve both goals, they augment the vanilla RNN-T with two distinct convolutional (CNN) front ends: a standard one for encoding correlations localized in time and a novel “global CNN” encoder that is designed to capture long-term correlations by summarizing activations over the entire utterance up to the current time step (while processing utterances incrementally through time).

The authors show that the resulting ConvRNN-T gives superior accuracy compared to other proposed neural streaming ASR architectures, such as the basic RNN-T, Conformer, and ContextNet.

Another concern with end-to-end ASR models is computational efficiency, especially since the unified neural architecture makes these models very attractive for on-device deployment, where compute cycles and (for mobile devices) power are at a premium.

In their paper “Compute cost amortized Transformer for streaming ASR”, Yi Xie and colleagues exploit the intuitive observation that the amount of computation a model performs should vary as a function of the difficulty of the task; for instance, input in which noise or an accent causes ambiguity may require more computation than a clean input with a mainstream accent. (We may think of this as the ASR model “thinking harder” in places where the words are more difficult to discern.)

Related content
A new approach to determining the “channel configuration” of convolutional neural nets improves accuracy while maintaining runtime efficiency.

The researchers achieve this with a very elegant method that leverages the integrated neural structure of the model. Their starting point is a Transformer-based ASR system, consisting of multiple stacked layers of multiheaded self-attention (MHA) and feed-forward neural blocks. In addition, they train “arbitrator” networks that look at the acoustic input (and, optionally, also at intermediate block outputs) to toggle individual components on or off.

Because these component blocks have “skip connections” that combine their outputs with the outputs of earlier layers, they are effectively optional for the overall computation to proceed. A block that is toggled off for a given input frame saves all the computation normally carried out by that block, producing a zero vector output. The following diagram shows the structure of both the elementary Transformer building block and the arbitrator that controls it:

Arbitrator:Transformer backbone.png
Illustration of the arbitrator and Transformer backbone of each block. The lightweight arbitrator toggles whether to evaluate subcomponents during the forward pass.

The arbitrator networks themselves are small enough that they do not contribute significant additional computation. What makes this scheme workable and effective, however, is that both the Transformer assemblies and the arbitrators that control them can be trained jointly, with dual goals: to perform accurate ASR and to minimize the overall amount of computation. The latter is achieved by adding a term to the training objective function that rewards reducing computation. Dialing a hyperparameter up or down selects the desired balance between accuracy and computation.

Related content
Branching encoder networks make operation more efficient, while “neural diffing” reduces bandwidth requirements for model updates.

The authors show that their method can achieve a 60% reduction in computation with only a minor (3%) increase in ASR error. Their cost-amortized Transformer proves much more effective than a benchmark method that constrains the model to attend only to sliding windows over the input, which yields only 13% savings and an error increase of almost three times as much.

Finally, in this short review of end-to-end neural ASR advances, we look at ways to recognize speech from more than one speaker, while keeping track of who said what (also known as speaker-attributed ASR).

This has traditionally been done with modular systems that perform ASR and, separately, perform speaker diarization, i.e., labeling stretches of audio according to who is speaking. However, here, too, neural models have recently brought advances and simplification, by integrating these two tasks in a single end-to-end neural model.

In their paper “Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech”, Ilya Sklyar and colleagues not only integrate ASR and segmentation-by-speaker but do so while processing inputs incrementally. Streaming multispeaker ASR with low latency is a key technology to enable voice assistants to interact with customers in collaborative settings. Sklyar’s system does this with a generalization of the RNN-T architecture that keeps track of turn-taking between multiple speakers, up to two of whom can be active simultaneously. The researchers’ separator-transducer-segmenter model is depicted below:

Separator-transducer-segmenter.png
Separator-transducer-segmenter. The tokens <sot> and <eot> represent the start of turn and end of turn. Model blocks with the same color have tied parameters, and transcripts in the color-matched boxes belong to the same speaker.

A key element that yields improvements over an earlier approach is the use of dedicated tokens to recognize both starts and ends of speaker turns, for what the authors call “start-pointing” and “end-pointing”. (End-pointing is a standard feature of many interactive ASR systems necessary to predict when a talker is done.) Beyond representing the turn-taking structure in this symbolic way, the model is also penalized during training for taking too long to output these markers, in order to improve the latency and temporal accuracy of the outputs.

Fairness in the performance of speech-enabled AI

The second theme we’d like to highlight, and one that is receiving increasing attention in speech and other areas of AI, is performance fairness: the desire to avert large differences in accuracy across different cohorts of users or on content associated with protected groups. As an example, concerns about this type of fairness gained prominence with demonstrations that certain computer vision algorithms performed poorly for certain skin tones, in part due to underrepresentation in the training data.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

There’s a similar concern about speech-based AI, with speech properties varying widely as a function of speaker background and environment. A balanced representation in training sets is hard to achieve, since the speakers using commercial products are largely self-selected, and speaker attributes are often unavailable for many reasons, privacy among them. This topic is also the subject of a special session at Interspeech, Inclusive and Fair Speech Technologies, which several Alexa AI scientists are involved in as co-organizers and presenters.

One of the special-session papers, “Reducing geographic disparities in automatic speech recognition via elastic weight consolidation”, by Viet Anh Trinh and colleagues, looks at how geographic location within the U.S. affects ASR accuracy and how models can be adapted to narrow the gap for the worst-performing regions. Here and elsewhere, a two-step approach is used: first, subsets of speakers with higher-than-average error rates are identified; then a mitigation step attempts to improve performance for those cohorts. Trinh et al.’s method identifies the cohorts by partitioning the speakers according to their geographic longitude and latitude, using a decision-tree-like algorithm that maximizes the word-error-rate (WER) differences between resulting regions:

Reducing geographical disparities.png
A map of 126 regions identified by the clustering tree. The color does not indicate a specific word error rate (WER), but regions with the same color do have the same WER.

Next, the regions are ranked by their average WERs; data from the highest-error regions is identified for performance improvement. To achieve that, the researchers use fine-tuning to optimize the model parameters for the targeted regions, while also employing a technique called elastic weight consolidation (EWC) to minimize performance degradation on the remaining regions.

This is important to prevent a phenomenon known as “catastrophic forgetting”, in which neural models degrade substantially on prior training data during fine-tuning. The idea is to quantify the influence that different dimensions of the parameter space have on the overall performance and then avoid large variations along those dimensions when adapting to a data subset. This approach decreases the WER mean, maximum, and variance across regions and even the overall WER (including the regions not fine-tuned on), beating out several baseline methods for model adaptation.

Pranav Dheram et al., in their paper “Toward fairness in speech recognition: Discovery and mitigation of performance disparities”, look at alternative methods for identifying underperforming speaker cohorts. One approach is to use human-defined geographic regions as given by postal (a.k.a. zip) codes, in combination with demographic information from U.S. census data, to partition U.S. geography.

Related content
NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

Zip codes are sorted into binary partitions by majority demographic attributes, so as to maximize WER discrepancies. The partition with higher WER is then targeted for mitigations, an approach similar to that adopted in the Trinh et al. paper. However, this approach is imprecise (since it lumps together speakers by zip code) and limited to available demographic data, so it generalizes poorly to other geographies.

Alternatively, Dheram et al. use speech characteristics learned by a neural speaker identification model to group speakers. These “speaker embedding vectors” are clustered, reflecting the intuition that speakers who sound similar will tend to have similar ASR difficulty.

Subsequently, these virtual speaker regions (not individual identities) can be ranked by difficulty and targeted for mitigation, without relying on human labeling, grouping, or self-identification of speakers or attributes. As shown in the table below, the automatic approach identifies a larger gap in ASR accuracy than the “geo-demographic” approach, while at the same time targeting a larger share of speakers for performance mitigation:

Cohort discovery

WER gap (%)

Bottom-cohort share (%)

Geodemographic

Automatic

41.7

65.0

0.8

10.0

The final fairness-themed paper we highlight explores yet another approach to avoiding performance disparities, known as adversarial reweighting (ARW). Instead of relying on explicit partitioning of the input space, this approach assigns continuous weights to the training instances (as a function of input features), with the idea that harder examples get higher weights and thereby exert more influence on the performance optimization.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

Secondly, ARW more tightly interleaves, and iterates, the (now weighted) cohort identification and mitigation steps. Mathematically, this is formalized as a min-max optimization algorithm that alternates between maximizing the error by changing the sample weights (hence “adversarial”) and minimizing the weighted verification error by adjusting the target model parameters.

ARW was designed for group fairness in classification and regression tasks that take individual data points as inputs. “Adversarial reweighting for speaker verification fairness”, by Minho Jin et al., looks at how the concept can be applied to a classification task that depends on pairs of input samples, i.e., checking whether two speech samples come from the same speaker. Solving this problem could help make a voice-based assistant more reliable at personalization and other functions that require knowing who is speaking.

The authors look at several ways to adapt ARW to learning similarity among speaker embeddings. The method that ultimately worked best assigns each pair of input samples an adversarial weight that is the sum of individual sample weights (thereby reducing the dimensionality of the weight prediction). The individual sample weights are also informed by which region of the speaker embedding space a sample falls into (as determined by unsupervised k-means clustering, the same technique used in Dheram et al.’s automatic cohort-identification method).

Computing ARW weights.png
Computing adversarial-reweighting (ARW) weights.

I omit the details, but once the pairwise (PW) adversarial weights are formalized in this way, we can insert them into the loss function for metric learning, which is the basis of training a speaker verification model. Min-max optimization can then take turns training the adversary network that predicts the weights and optimizing the speaker embedding extractor that learns speaker similarity.

On a public speaker verification corpus, the resulting system reduced overall equal-error rate by 7.6%, while also reducing the gap between genders by 17%. It also reduced the error variability across different countries of origin, by nearly 10%. Note that, as in the case of the Trinh et al. ASR fairness paper, fairness mitigation improves both performance disparities and overall accuracy.

This concludes our thematic highlights of Alexa Speech Interspeech papers. Note that Interspeech covers much more than speech and speaker recognition. Please check out companion pieces that feature additional work, drawn from technical areas that are no less essential for a functioning speech-enabled AI assistant: natural-language understanding and speech synthesis.

Research areas

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Selling Partner Trust & Store Integrity Science Team. We are looking for a talented scientist who is passionate to build advanced machine learning systems that help manage the safety of millions of transactions every day and scale up our operation with automation. Key job responsibilities Innovate with the latest GenAI/LLM/VLM technology to build highly automated solutions for efficient risk evaluation and automated operations Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to create impactful business value Learn, explore and experiment with the latest machine learning advancements to create the best customer experience A day in the life You will be working within a dynamic, diverse, and supportive group of scientists who share your passion for innovation and excellence. You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our marketplace through intelligent automation. As a key member of our team, you'll develop and deploy state-of-the-art machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the safety and security of the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of honest entrepreneurs and businesses. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, account takeovers, and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient seller verification, transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and exclusive access to coverage of live sports. All customers regardless of whether they have a Prime membership or not, can access programming from subscriptions such as Apple TV, Peacock Premium Plus, HBO Max, FOX One, Crunchyroll and MGM+, as well as more than 900 free ad-support (FAST) Channels, rent or buy titles, and enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Interested in influencing what customers around the world see when they turn on Prime Video? The Prime Video Personalization and Discovery team matches customers with the right content at the right time, at all touch points throughout the content discovery journey. We are looking for a customer-focused, solutions-oriented Senior Data Scientist to build and guide new data-driven frameworks to understand what makes new personalization and content discovery innovations successful for users and the business. You'll be part of an embedded science team on projects that are fast-paced, challenging, and ultimately influence what millions of customers around the world see when the log into Prime Video. The ideal candidate brings strong problem-solving skills, stakeholder communication skills, and the ability to balance technical rigor with delivery speed and customer impact. You will build cross-functional support within Prime Video, assess business problems, define metrics, and support iterative scientific solutions that balance short-term delivery with long-term science roadmaps. Key job responsibilities - Use advanced statistical and machine learning techniques to extract insights from complex, large-scale data sets - Design and implement end-to-end data science workflows, from data acquisition and cleaning to model development, testing, and deployment - Support scalable, self-service data analyses by building datasets for analytics, reporting and ML use cases - Partner with product stakeholders and science peers to identify strategic data-driven opportunities to improve the customer experience - Communicate findings, conclusions, and recommendations to technical and non-technical stakeholders - Stay up-to-date on the latest data science tools, techniques, and best practices and help evangelize them across the organization
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. We are looking for an Applied Scientist to push the envelope of AI content generation. As a scientist at Prime Video, you will contribute directly to productions using innovative tools in computer vision, deep learning, and generative AI to transform entertainment experiences. The ideal candidate has deep knowledge in one of: graphics, deep learning, generative AI and/or reinforcement learning and experience applying them real-world problems. You understand tradeoffs between business needs and model complexity, and you take calculated risks in developing rapid prototypes and iterative model improvements. You are excited to learn from and alongside seasoned scientists, engineers, and business leaders. You are an excellent communicator and effectively translate technical findings into production systems and business action (and customer delight). Key job responsibilities • Build generative AI models that create production-ready content, including movie content, localized assets, and visual marketing materials used across Prime Video's global platform. • Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, complexity. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models. • Run experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Share knowledge and research outcomes via internal and external conferences and journal publications A day in the life In this role, you will invent science and systems for content localization, generation, including graphics and machine learning-based modeling systems. You will work with a team of scientists and product managers to design customer-facing products, and you will work with technology teams to productize and maintain the associated solutions.
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
CA, ON, Toronto
Are you interested in shaping the future of Advertising and B2B Sales? We are a growing science and engineering team with an exciting charter and need your passion, innovative thinking, and creativity to help take our products to new heights. Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products are strategically important to our businesses driving long term growth. We break fresh ground in product and technical innovations every day! Within the Advertising Sales organization, we are building a central AI/ML team and are seeking top science talent to build new, science-backed services to drive success for our customers. Our goal is to transform the way account teams operate by creating actionable insights and recommendations they can share with their advertising accounts, and ingesting Generative AI throughout their end-to-end workflows to improve their work efficiency. As a part of our team, you will bring deep expertise in Generative AI and quantitative modeling (forecasting, recommender systems, reinforcement learning, causal inferencing or generative artificial intelligence) to build and refine models that can be implemented in production. You will contribute to chart new courses with our ad sales support technologies, and you have the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers. You will be part of a team of fellow scientists and engineers taking on iterative approaches to tackle big, long-term problems. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon's Retail and Marketplace businesses. We deliver billions of ads impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences; this is your opportunity to work within the fastest growing businesses across all of Amazon! Define a long-term scientific vision for our advertising sales business, driven from our customers' needs, translating that direction into specific plans for scientists, engineers and product teams. This role combines scientific leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities - Conceptualize and lead state-of-the-art research on new Machine Learning and Generative Artificial Intelligence solutions to optimize all aspects of the Ad Sales business - Guide the technical approach for the design and implementation of successful models and algorithms in support of expert cross-functional teams delivering on demanding projects - Conduct deep data analysis to derive insights to the business, and identify gaps and new opportunities - Run regular A/B experiments, gather data, and perform statistical analysis - Work closely with software engineers to deliver end-to-end solutions into production - Improve the scalability, efficiency and automation of large-scale data analytics, model training, deployment and serving About the team Sales AI is a central science and engineering organization within Amazon Advertising Sales that powers selling motions and account team workflows via state-of-the-art of AI/ML services. Sales AI is investing in a range of sales intelligence models, including the development of advertiser insights, recommendations and Generative AI-powered applications throughout account team workflows.
US, NY, New York
In this role, you will build scalable solutions and sophisticated models that identify and drive growth opportunities for Amazon Ads teams, specifically within Amazon's Demand Side Platform (ADSP). You will leverage machine learning, simulation, and advanced statistical techniques to explain complex patterns, quantify business impact, predict future trends, and prescribe actionable strategies that inform critical business decisions at the highest levels of the organization. You will work with various stakeholders to align on priorities, with the understanding that scope and direction may evolve based on organizational needs. You will translate business goals into agile, insightful analytics that create tangible value for both stakeholders and customers, and communicate your findings clearly and actionably to managers and senior leaders so they can quickly understand insights and take decisive action. You will set the strategy for ads delivery and quality and establish the measurement and decision frameworks. A core mandate for this role is to identify, instrument, and operationalize the input metrics that most directly drive ads delivery, quality, and performance, ensuring we optimize the levers that move outcomes rather than simply reporting on lagging KPIs. Key job responsibilities * You will define and execute in-depth data analysis that drives data-informed decision making for product, sales, and finance teams who speak on behalf of advertisers. * You will establish and drive data hygiene best practices to ensure coherence and integrity of data feeding into production ML/AI solutions. * You will identify, instrument, and operationalize the input metrics that most directly drive ads delivery, quality, and performance, creating robust measurement frameworks. * You will collaborate with colleagues across science and engineering disciplines for fast turnaround proof-of-concept prototyping at scale. * You will partner with product managers and stakeholders to define forward-looking product visions and prospective business use cases. * You will set the strategy for ads delivery and quality, establishing decision frameworks that enable teams to move from reactive reporting to proactive optimization. * You will drive and lead a culture of data-driven innovations within the Amazon AdTech org.