Rohit Prasad, vice president and head scientist for Alexa AI, demonstrates interactive teaching by customers, a new Alexa capability announced last fall.

Alexa: The science must go on

Throughout the pandemic, the Alexa team has continued to invent on behalf of our customers.

COVID-19 has cost us precious lives and served a harsh reminder that so much more needs to be done to prepare for unforeseen events. In these difficult times, we have also seen heroic efforts — from frontline health workers working night and day to take care of patients, to rapid development of vaccines, to delivery of groceries and essential items in the safest possible way given the circumstances.

Communication features.gif
Alexa’s communications capabilities are helping families connect with their loved ones during lockdown.

Alexa has also tried to help where it can. We rapidly added skills that provide information about resources for dealing with COVID-19. We donated Echo Shows and Echo Dots to healthcare providers, patients, and assisted-living facilities around the country, and Alexa’s communications capabilities — including new calling features (e.g., group calling), and the new Care Hub — are helping providers coordinate care and families connect with their loved ones during lockdown.

It has been just over a year since our schools closed down and we started working remotely. With our homes turned into offices and classrooms, one of the challenges has been keeping our kids motivated and on-task for remote learning. Skills such as the School Schedule Blueprint are helping parents like me manage their children’s remote learning and keep them excited about the future.

Despite the challenges of the pandemic, the Alexa team has shown incredible adaptability and grit, delivering scientific results that are already making a difference for our customers and will have long-lasting effects. Over the past 12 months, we have made advances in four thematic areas, making Alexa more

  1. natural and conversational: interactions with Alexa should be as free-flowing as interacting with another person, without requiring customers to use strict linguistic constructs to communicate with Alexa’s ever-growing set of skills. 
  2. self-learning and data efficient: Alexa’s intelligence should improve without requiring manually labeled data, and it should strive to learn directly from customers. 
  3. insightful and proactive: Alexa should assist and/or provide useful information to customers by anticipating their needs.
  4. trustworthy: Alexa should have attributes like those we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

Natural and conversational 

Accurate far-field automatic speech recognition (ASR) is critical for natural interactions with Alexa. We have continued to make advances in this area, and at Interspeech 2020, we presented 12 papers, including improvements in end-to-end ASR using the recurrent-neural-network-transducer (RNN-T) architecture. ASR advances, coupled with improvements in natural-language understanding (NLU), have reduced the worldwide error rate for Alexa by more than 24% in the past 12 months.

DashHashLM.png
One of Alexa Speech’s Interspeech 2020 papers, “Rescore in a flash: compact, cache efficient hashing data structures for n-gram language models”, proposes a new data structure, DashHashLM, for encoding the probabilities of word sequences in language models with a minimal memory footprint.

Customers depend on Alexa’s ability to answer single-shot requests, but to continue to provide new, delightful experiences, we are teaching Alexa to accomplish complex goals that require multiturn dialogues. In February, we announced the general release of Alexa Conversations, a capability that makes it easy for developers to build skills that engage customers in dialogues. The developer simply provides APIs (application programming interfaces), a list of entity types invoked in the skill, and a small set of sample dialogues that illustrate interactions with the skills’ capabilities. 

Alexa Conversations’ deep-learning-based dialogue manager takes care of the rest by predicting numerous alternate ways in which a customer might engage with the skill. Nearly 150 skills — such as iRobot Home and Art Museum — have now been built with Alexa Conversations, with another 100 under way, and our internal teams have launched capabilities such as Alexa Greetings (where Alexa answers the Ring doorbell on behalf of customers) and “what to read” with the same underlying capability.  

Further, to ensure that existing skills built without Alexa Conversations understand customer requests more accurately, we migrated hundreds of skills to deep neural networks (as opposed to conditional random fields). Migrated skills are seeing increases in understanding accuracy of 15% to 23% across locales. 

Alexa’s skills are ever expanding, with over 100,000 skills built worldwide by external developers. As that number has grown, discovering new skills has become a challenge. Even when customers know of a skill, they can have trouble remembering its name or how to interact with it. 

To make skills more discoverable and eliminate the need to say “Alexa, ask <skill X> to do <Y>,” we launched a deep-learning-based capability for routing utterances that do not have explicit mention of a skill’s name to relevant skills. Thousands of skills are now being discovered naturally, and in preview, they received an average of 15% more traffic. At last year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), we presented a novel method for automatically labeling training data for Alexa’s skill selection model, which is crucial to improving utterance routing accuracy as the number of skills continues to grow.  

A constituency tree featuring syntactic-distance measures.
To make the prosody of Alexa's speech more natural, the Amazon Text-to-Speech team uses constituency trees to measure the syntactic distance (orange circles) between words of an utterance, a good indicator of where phrasing breaks or prosodic resets should occur.
Credit: Glynis Condon

As we’ve been improving Alexa’s understanding capabilities, our Text-to-Speech (TTS) synthesis team has been working to increase the naturalness of Alexa’s speech. We have developed prosodic models that enable Alexa to vary patterns of intonation and inflection to fit different conversational contexts. 

This is a first milestone on the path to contextual language generation and speech synthesis. Depending on the conversational context and the speaking attributes of the customer, Alexa will vary its response — both the words chosen and the speaking style, including prosody, stress, and intonation. We also made progress in detecting tone of voice, which can be an additional signal for adapting Alexa’s responses.

Humor is a critical element of human-like conversational abilities. However, recognizing humor and generating humorous responses is one of the most challenging tasks in conversational AI. University teams participating in the Alexa Prize socialbot challenge have made significant progress in this area by identifying opportunities to use humor in conversation and selecting humorous phrases and jokes that are contextually appropriate.

One of our teams is identifying humor in product reviews by detecting incongruity between product titles and questions asked by customers. For instance, the question “Does this make espresso?” might be reasonable when applied to a high-end coffee machine, but applied to a Swiss Army knife, it’s probably a joke. 

We live in a multilingual and multicultural world, and this pandemic has made it even more important for us to connect across language barriers. In 2019, we had launched a bilingual version of Alexa — i.e., customers could address the same device in US English or Spanish without asking Alexa to switch languages on every request. However, the Spanish responses from Alexa were in a different voice than the English responses.  

By leveraging advances in neural text-to-speech (much the way we had used multilingual learning techniques to improve language understanding), we taught the original Alexa voice — which was based on English-only recordings — to speak perfectly accented U.S. Spanish. 

To further break down language barriers, in December we launched two-way language translation, which enables Alexa to act as an interpreter for customers speaking different languages. Alexa can now translate on the fly between English and six other languages on the same device.

In September 2020, I had the privilege of demonstrating natural turn-taking (NTT), a new capability that has the potential to make Alexa even more useful and delightful for our customers. With NTT, Alexa uses visual cues, in combination with acoustic and linguistic information, to determine whether a customer is addressing Alexa or other people in the household — even when there is no wake word. Our teams are working hard on bringing NTT to our customers later this year so that Alexa can participate in conversations just like a family member or a friend.  

Self-learning and data-efficient 

In AI, one definition of generalization is the ability to robustly handle novel situations and learn from them with minimal human supervision. Two years back, we introduced the ability for Alexa to automatically correct errors in its understanding without requiring any manual labeling. This self-learning system uses implicit feedback (e.g., when a customer interrupts a response to rephrase a request) to automatically revise Alexa’s handling of requests that fail. This learning method is automatically addressing 15% of defects, as quickly as a few hours after detection; with supervised learning, these defects would have taken weeks to address. 

Diagram depicting example of paraphrase alignment
We won a best-paper award at last year's International Conference on Computational Linguistics for a self-learning system that finds the best mapping from a successful request to an unsuccessful one, then transfers the training labels automatically.
Credit: Glynis Condon

At December 2020’s International Conference on Computational Linguistics, our scientists won a best-paper award for a complementary approach to self-learning. Where the earlier system overwrites the outputs of Alexa’s NLU models, the newer system uses implicit feedback to create automatically labeled training examples for those models. This approach is particularly promising for the long tail of unusually phrased requests, and it can be used in conjunction with the existing self-learning system.

In parallel, we have been inventing methods that enable Alexa to add new capabilities, intents, and concepts with as little manually labeled data as possible — often by generalizing from one task to another. For example, in a paper at last year’s ACL Workshop on NLP for Conversational AI, we demonstrated the value of transfer learning from reading comprehension to other natural-language-processing tasks, resulting in the best published results on few-shot learning for dialogue state tracking in low-data regimes.

Similarly, at this year’s Spoken Language Technology conference, we showed how to combine two existing approaches to few-shot learning — prototypical networks and data augmentation — to quickly and accurately learn new intents.

Human-like conversational abilities require common sense — something that is still elusive for conversational-AI services, despite the massive progress due to deep learning. We received the best-paper award at the Empirical Methods in Natural Language Processing (EMNLP) 2020 Workshop on Deep Learning Inside Out (DeeLIO) for our work on infusing commonsense knowledge graphs explicitly and implicitly into large pre-trained language models to give machines greater social intelligence. We will continue to build on such techniques to make interactions with Alexa more intuitive for our customers, without requiring a large quantity of annotated data. 

In December 2020, we launched a new feature that allows customers to teach Alexa new concepts. For instance, if a customer says, “Alexa, set the living room light to study mode”, Alexa might now respond, “I don't know what study mode is. Can you teach me?” Alexa extracts a definition from the customer’s answer, and when the customer later makes the same request — or a similar request — Alexa responds with the learned action. 

Alexa uses multiple deep-learning-based parsers to enable such explicit teaching. First, Alexa detects spans in requests that it has trouble understanding. Next, it engages in a clarification dialogue to learn the new concept. Thanks to this novel capability, customers are able to customize Alexa for their needs, and Alexa is learning thousands of new concepts in the smart-home domain every day, without any manual labeling. We will continue to build on this success and develop more self-learning techniques to make Alexa more useful and personal for our customers.

Insightful and proactive

Alexa-enabled ambient devices have revolutionized daily convenience, enabling us to get what we need simply by asking for it. However, the utility of these devices and endpoints does not need to be limited to customer-initiated requests. Instead, Alexa should anticipate customer needs and seamlessly assist in meeting those needs. Smart huncheslocation-based reminders, and discovery of routines are a few ways in which Alexa is already helping customers. 

Illustration of Alexa inferring a customer asking about weather at the beach may be planning a beach trip.
In this interaction, Alexa infers that a customer who asks about the weather at the beach may be interested in other information that could be useful for planning a beach trip.
credit: Glynis Condon

Another way for Alexa to be more useful to our customers is to predict customers’ goals that span multiple disparate skills. For instance, if a customer asks, “How long does it take to steep tea?”, Alexa might answer, “Five minutes is a good place to start", then follow up by asking, "Would you like me to set a timer for five minutes?” In 2020, we launched an initial version of Alexa’s ability to anticipate and complete multi-skill goals without any explicit preprogramming.  

While this ability makes the complex seem simple, underneath, it depends on multiple deep-learning models. A “trigger model” decides whether to predict the customer’s goal at all, and if it decides it should, it suggests a skill to handle the predicted goal. But the skills it suggests are identified by another model that relies on information-theoretic analyses of input utterances, together with subsidiary models that assess features such as whether the customer was trying to rephrase a prior command, or whether the direct goal and the latent goal have common entities or values.  

Trustworthy

We have made significant advances in areas that are key to making Alexa more trusted by customers. In the field of privacy-preserving machine learning, for instance, we have been exploring differential privacy, a theoretical framework for evaluating the privacy protections offered by systems that generate aggregate statistics from individuals’ data. 

At the EMNLP 2020 Workshop on Privacy in Natural Language Processing, we presented a paper that proposes a new way to offer metric-differential-privacy assurances by adding so-called elliptical noise to training data for machine learning systems, and at this year’s Conference of the European Chapter of the Association for Computational Linguistics, we’ll present a technique for transforming texts that preserves their semantic content but removes potentially identifying information. Both methods significantly improve on the privacy protections afforded by older approaches while leaving the performance of the resulting systems unchanged.

Elliptical vs. spherical noise.png
A new approach to protecting privacy in machine learning systems that uses elliptical noise (right) rather than the conventional spherical noise (left) to perturb training data significantly improves privacy protections while leaving the performance of the resulting systems unchanged.


We have also made Alexa’s answers to information-centric questions more trustworthy by expanding our knowledge graph and improving our neural semantic parsing and web-based information retrieval. If, however, the sources of information used to produce a knowledge graph encode harmful social biases — even as a matter of historical accident — the knowledge graph may as well. In a pair of papers presented last year, our scientists devised techniques for both identifying and remediating instances of bias in knowledge graphs, to help ensure that those biases don’t leak into Alexa’s answers to questions.

A two-dimensional representation of our method for measuring bias in knowledge graph embeddings.
A two-dimensional representation of the method for measuring bias in knowledge graph embeddings that we presented last year. In each diagram, the blue dots labeled person1 indicate the shift in an embedding as we tune its parameters. The orange arrows represent relation vectors and the orange dots the sums of those vectors and the embeddings. As we shift the gender relation toward maleness, the profession relation shifts away from nurse and closer to doctor, indicating gender bias.
Credit: Glynis Condon

Similarly, the language models that many speech recognition and natural-language-understanding applications depend on are trained on corpora of publicly available texts; if those data reflect biases, so will the resulting models. At the recent ACM Conference on Fairness, Accountability, and Transparency, Alexa AI scientists presented a new data set that can be used to test language models for bias and a new metric for quantitatively evaluating the test results.

Still, we recognize that a lot more needs to be done in AI in the areas of fairness and ethics, and to that end, partnership with universities and other dedicated research organizations can be a force multiplier. As a case in point, our collaboration with the National Science Foundation to accelerate research on fairness in AI recently entered its second year, with a new round of grant recipients named in February 2021.

And in January 2021, we announced the creation of the Center for Secure and Trusted Machine Learning, a collaboration with the University of Southern California that will support USC and Amazon researchers in the development of novel approaches to privacy-preserving ML solutions

Strengthening the research community

I am particularly proud that, despite the effort required to bring all these advances to fruition, our scientists have remained actively engaged with the broader research community in many other areas. To choose just a few examples:

  • In August, we announced the winners of the third instance of the Alexa Prize Grand Challenge to develop conversational-AI systems, or socialbots, and in September, we opened registration for the fourth instance. Earlier this month, we announced another track of research for Alexa Prize called the TaskBot Challenge, in which university teams will compete to develop multimodal agents that assist customers in completing tasks requiring multiple steps and decisions.
  • In September, we announced the creation of the Columbia Center of Artificial Intelligence Technology, a collaboration with Columbia Engineering that will be a hub of research, education, and outreach programs.
  • In October, we launched the DialoGLUE challenge, together with a set of benchmark models, to encourage research on conversational generalizability, or the ability of dialogue agents trained on one task to adapt easily to new tasks.

Come work with us

Amazon is looking for data scientists, research scientists, applied scientists, interns, and more. Check out our careers page to find all of the latest job listings around the world.

We are grateful for the amazing work of our fellow researchers in the medical, pharmaceutical, and biotech communities who have developed COVID-19 vaccines in record time.

Thanks to their scientific contributions, we now have the strong belief that we will prevail against this pandemic. 

I am looking forward to the end of this pandemic and the chance to work even more closely with the Alexa teams and the broader scientific community to make further advances in conversational AI and enrich our customers’ lives. 

Research areas

Related content

US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing the design of microwave components for cryogenic environments. Working alongside other scientists and engineers, you will design and validate hardware performing microwave signal conditioning at cryogenic temperatures for AWS quantum processors. Candidates must have a background in both microwave theory and implementation. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development from requirements development to validation. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the signal conditioning of AWS quantum processor systems at cryogenic temperatures. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems across our cryogenic signal chain. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both performance and cost metrics. Research enabling technologies necessary for AWS to produce commercially viable quantum computers. A day in the life As you design and implement cryogenic microwave signal conditioning solutions, from requirements definition to deployment, you will also: Participate in requirements, design, and test reviews and communicate with internal stakeholders. Work cross-functionally to help drive decisions using your unique technical background and skill set. Refine and define standards and processes for operational excellence. Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Vehicle Design and Test team within Flight Sciences is looking for an outstanding engineer to help us rapidly configure, design, analyze, prototype, and test innovative drone vehicles. You’ll be responsible for assessing the Aerodynamics, Performance, and Stability & Control characteristics of vehicle designs. You’ll help build and utilize our suite of Multi-disciplinary Optimization (MDO) tools. You’ll explore new and novel drone vehicle conceptual designs in both focused and wide open design spaces, with the ultimate goal of meeting our customer requirements. You’ll have the opportunity to prototype vehicle designs and support wind tunnel and other testing of vehicle designs. You will directly support the Office of the Chief Program Engineer, and work closely across all vehicle subsystem teams to ensure integrated designs that meet performance, reliability, operability, manufacturing, and cost requirements. About the team Our Flight Sciences Vehicle Design & Test organization includes teams that span the following disciplines: Aerodynamics, Performance, Stability & Control, Configuration & Spatial Integration, Loads, Structures, Mass Properties, Multi-disciplinary Optimization (MDO), Wind Tunnel Testing, Noise Testing, Flight Test Instrumentation, and Rapid Prototyping.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Large Language Models (LLM)? We are embarking on a multi-year journey to improve the shopping experience for customers using Alexa globally. In 2024, we started building all Shopping experiences leveraging LLMs in the US. We create customer-focused solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. We are seeking an Applied Scientist to lead a new, greenfield initiative that shapes the arc of invention with Machine Learning and Large Language Models. Your deliverables will directly impact executive leadership team goals and shape the future of shopping experiences with Alexa. We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, WA, Seattle
The vision for Alexa is to be the world’s best personal assistant. Such an assistant will play a vital role in managing the communication lives of customers, from drafting communications to coordinating with people on behalf of customers. At Alexa Communications, we’re leveraging Generative AI to bring this vision to life. If you’re passionate about building magical experiences for customers, while solving hard, complex technical problems, then this role is for you. You will operate at the intersection of large language models, real time communications, voice and graphical user interfaces, and mixed reality to deliver cutting-edge features for end users. Come join us to invent the future of how millions of customers will communicate with and through their virtual AI assistants. Key job responsibilities The Comms Experience Insights (CXI) team is looking for an experienced, self-driven, analytical, and strategic Data Scientist II. We are looking for an individual who is passionate about tying together huge amounts of data to answer complex stakeholder questions. You should have deep expertise in translating data into meaningful insights through collaboration with Data Engineers and Business Analysts. You should also have extensive experience in model fitting and explaining how the insights derived from those models impact a business. In this role, you will take data curated by a dedicated team of Data Engineers to conduct deep statistical analysis on usage trends. The right candidate will possess excellent business and communication skills, be able to work with business owners to develop and define key business questions, and be able to collaborate with Data Engineers and Business Analysts to analyze data that will answer those questions. The right candidate should have a solid understanding of how to curate the right datasets that can be used to train data models, and the desire to learn and implement new technologies and services to further a scalable, self-service model.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Data Scientist, you will * Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is central to Twitch's decision-making process, and data scientists are a critical component to evangelize data-driven decision making in all of our operations. As a data scientist at Twitch, you will be on the ground floor with your team, shaping the way product performance is measured, defining what questions should be asked, and scaling analytics methods and tools to support our growing business, leading the way for high quality, high velocity decisions for your team. For this role, we're looking for an experienced product data scientist who will help develop the strategy and evaluate/improve product initiatives within our Creator product team. You will be responsible to define and track KPIs, design experiments, evaluate A/B tests, implement data instrumentation, and inform on investment. Our ideal candidate is a "full-stack" data powerhouse who uses data to drive decision making to make the best products for our creators and their communities. Your input will be core to decision making across all major product strategies and initiatives that our team builds. You will work closely with product managers, technical program managers, engineering, data scientists, and organization leadership within and outside of the Creator organization. You Will - Inform product strategies by defining and updating core metrics for each initiative - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Evaluate and forecast impact of product features on creators, viewers, and the entire Twitch ecosystem - Design A/B experiments to drive product direction with iterative innovation and measurement - Drive the team's analysis roadmap and prioritize the most valuable projects - Tackle complex and ambiguous analytic projects, resolve ambiguity and accurately identify the trade-offs between speed and quality and apply or route work as necessary - Dive deep into the data to understand how creator and viewer behaviors change with the evolution of our product - Act as our team's thought leader on best practices and move towards long-term vision of sustainable and thriving data processes - Own data collection and product instrumentation implementation and quality assurance - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount About the team Twitch is all about community, and our Community Team is a core pillar of what makes Twitch, Twitch. Teams within Community are responsible for a myriad of product areas impacting the creator, viewer, and moderator journeys on our platform. As a member of our team, you'll build solutions that improve g the experience of millions of daily active users on our platform and create tools that keep both streamers and viewers engaged and connected on our platform.
US, NY, New York
Amazon is looking for an Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As an Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Applied Scientist you will: - Set the scientific strategic vision for the team. You - - lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.