Alexa’s ASRU papers concentrate on extracting high-value training data

Related data selection techniques yield benefits for both speech recognition and natural-language understanding.

This year at the IEEE Automatic Speech Recognition and Understanding (ASRU) Workshop, Alexa researchers have two papers about training machine learning systems with minimal hand-annotated data. Both papers describe automated methods for producing training data, and both describe additional algorithms for extracting just the high-value examples from that data.

Each paper, however, gravitates to a different half of the workshop’s title: one is on speech recognition, or converting an acoustic speech signal to text, and the other is on natural-language understanding, or determining a text’s meaning.

The natural-language-understanding (NLU) paper is about adding new functions to a voice agent like Alexa when training data is scarce. It involves “self-training”, in which a machine learning model trained on sparse annotated data itself labels a large body of unannotated data, which in turn is used to re-train the model.

The researchers investigate techniques for winnowing down the unannotated data, to extract examples pertinent to the new function, and then winnowing it down even further, to remove redundancies.

The automatic-speech-recognition (ASR) paper is about machine-translating annotated data from a language that Alexa already supports to produce training data for a new language. There, too, the researchers report algorithms for identifying data subsets — both before and after translation — that will yield a more-accurate model.

Three of the coauthors on the NLU paper — applied scientists Eunah Cho and Varun Kumar and applied-scientist manager Bill Campbell — are also among the five Amazon organizers of the Life-Long Learning for Spoken-Language Systems workshop, which will take place on the first day of ASRU. The workshop focuses on the problem of continuously improving deployed conversational-AI systems.

Cho and her colleagues’ main-conference paper, “Efficient Semi-Supervised Learning for Natural Language Understanding by Optimizing Diversity”, addresses an instance of that problem: teaching Alexa to recognize new “intents”.

Enlarged intents

Alexa’s NLU models classify customer requests according to domain, or the particular service that should handle a request, and intent, or the action that the customer wants executed. They also identify the slot types of the entities named in the requests, or the roles those entities play in fulfilling the request. In the request “Play ‘Undecided’ by Ella Fitzgerald”, for instance, the domain is Music and the intent PlayMusic, and the names “Undecided” and “Ella Fitzgerald” fill the slots SongName and ArtistName.

Most intents have highly specific vocabularies (even when they’re large, as in the case of the PlayMusic intent), and ideally, the training data for a new intent would be weighted toward in-vocabulary utterances. But when Alexa researchers are bootstrapping a new intent, intent-specific data is scarce. So they need to use training data extracted from more-general text corpora.

As a first pass at extracting intent-relevant data from a general corpus, Cho and her colleagues use a simple n-gram-based linear logistic regression classifier, trained on whatever annotated, intent-specific data is available. The classifier breaks every input utterance into overlapping one-word, two-word, and three-word chunks — n-grams — and assigns each chunk a score, indicating its relevance to the new intent. The relevance score for an utterance is an aggregation of the chunks’ scores, and the researchers keep only the most relevant examples.

In an initial experiment, the researchers used sparse intent-specific data to train five different machine learning models to recognize five different intents. Then they fed unlabeled examples extracted by the regression classifier to each intent recognizer. The recognizers labeled the examples, which were then used to re-train the recognizers. On average, this reduced the recognizers’ error rates by 15%.

To make this process more efficient, Cho and her colleagues trained a neural network to identify paraphrases, which are defined as pairs of utterances that have the same domain, intent, and slot labels. So “I want to listen to Adele” is a paraphrase of “Play Adele”, but “Play Seal” is not.

Augmented-data embedding
The figure above depicts embeddings of NLU training data, or geometrical representations of the data such that utterances with similar meanings are grouped together. The brown points represent annotated data specific to a new intent; the blue points represent intent-relevant data extracted from a more general data set.

The researchers wanted their paraphrase detector to be as general as possible, so they trained it on data sampled from Alexa’s full range of domains and intents. From each sample, they produced a template by substituting slot types for slot values. So, for instance, “Play Adele in the living room” became something like “Play [artist_name] in the [device_location].” From those templates, they could generate as comprehensive a set of training pairs as they wanted — paraphrases with many different sentence structures and, as negative examples, non-paraphrases with the same sentence structures.

From the data set extracted by the logistic classifier, the paraphrase detector selects a small batch of examples that offer bad paraphrases of the examples in the intent-specific data set. The idea is that bad paraphrases will help diversify the data, increasing the range of inputs the resulting model can handle.

The bad paraphrases are added to the annotated data, producing a new augmented data set, and then the process is repeated. This method halves the amount of training data required to achieve the error rate improvements the researchers found in their first experiment.

Gained in translation

The other ASRU paper, “Language Model Bootstrapping Using Neural Machine Translation for Conversational Speech Recognition”, is from applied scientist Surabhi Punjabi, senior applied scientist Harish Arsikere, and senior manager for machine learning Sri Garimella, all of the Alexa Speech group. It investigates building an ASR system in a language — in this case, Hindi — in which little annotated training data is available.

ASR systems typically have several components. One, the acoustic model, takes a speech signal as input and outputs phonetic renderings of short speech sounds. A higher-level component, the language model, encodes statistics about the probabilities of different word sequences. It can thus help distinguish between alternate interpretations of the same acoustic signal (for instance, “Pulitzer Prize” versus “pullet surprise”).

Punjabi and her colleagues investigated building a Hindi language model by automatically translating annotated English-language training data into Hindi. The first step was to train a neural-network-based English-Hindi translator. This required a large body of training data, which matched English inputs to Hindi translations.

Here the researchers ran into a problem similar to the one that Cho and her colleagues confronted. By design, the available English-Hindi training sets were drawn from a wide range of sources and covered a wide range of topics. But the annotated English data that the researchers wanted to translate was Alexa-specific.

Punjabi and her colleagues started with a limited supply of Alexa-specific annotated data in Hindi, collected through Cleo, an Alexa skill that allows multilingual customers to help train machine learning models in new languages. Using an off-the-shelf statistical model, they embedded that data, or represented each sentence as a point in a geometric space, such that sentences with similar meanings clustered together.

Then they embedded Hindi sentences extracted from a large, general, English-Hindi bilingual corpus and measured their distance from the average embedding of the Cleo data. To train their translator, they used just those sentences within a fixed distance of the average — that is, sentences whose meanings were similar to those of the Cleo data.

In one experiment, they then used self-training to fine-tune the translator. After the translator had been trained, they used it to translate a subset of the English-only Alexa-specific data. Then they used the resulting English-Hindi sentence pairs to re-train the translator.

Like all neural translators, Punjabi and her colleagues’ outputs a list of possible translations, ranked according to the translator’s confidence that they’re accurate. In another experiment, the researchers used a simple language model, trained only on the Cleo data, to re-score the lists produced by the translator according to the probability of their word sequences. Only the top-ranked translation was added to the researchers’ Hindi data set.

In another experiment, once Punjabi and her colleagues had assembled a data set of automatically translated utterances, they used the weak, Cleo-based language model to winnow it down, discarding sentences that the model deemed too improbable. With the data that was left, they built a new, much richer language model.

Punjabi and her colleagues evaluated each of these data enrichment techniques separately, so they could measure the contribution that each made to the total error rate reduction of the resulting language model. To test each language model, they integrated it into a complete ASR system, whose performance they compared to that of an ASR system that used a language model trained solely on the Cleo data.

Each modification made a significant difference in its own right. In experiments involving a Hindi data set with 200,000 utterances, re-scoring translation hypotheses, for instance, reduced the ASR system’s error rate by as much as 6.28%, model fine-tuning by as much as 6.84%. But the best-performing language model combined all the modifications, reducing the error rate by 7.86%.

When the researchers reduced the size of the Hindi data set, to simulate the situation in which training data in a new language is particularly hard to come by, the gains were even greater. At 20,000 Hindi utterances, the error rate reduction was 13.18%, at 10,000, 15.65%.

Lifelong learning

In addition to Cho, Kumar, and Campbell, the seven organizers of the Life-Long Learning for Spoken-Language Systems Workshop include Hadrian Glaude, a machine learning scientist, and senior principal scientist Dilek Hakkani-Tür, both of the Alexa AI group.

The workshop, which addresses problems of continual improvement to conversational-AI systems, features invited speakers, including Nancy Chen, a primary investigator at Singapore’s Agency for Science, Technology, and Research (A*STAR), and Alex Waibel, a professor of computer science at Carnegie Mellon University and one of the workshop organizers. The poster session includes six papers, spanning topics from question answering to emotion recognition.

Research areas

Related content

US, MD, Annapolis Junction
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) methods. We build models for text, image, video, audio, and multi-modal use cases, using traditional or generative approaches to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position may require local travel up to 25% It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Amazon Web Services (AWS) Professional Services (ProServe) is looking for Data Scientists who like helping U.S. Federal agencies implement innovative cloud computing solutions and solve technical problems using state-of-the-art language models in the cloud. AWS ProServe engages in a wide variety of projects for customers and partners, providing collective experience from across the AWS customer base and are obsessed about strong success for the Customer. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. At AWS, we're hiring experienced data scientists with a background in NLP, generative AI, and document processing to help our customers understand, plan, and implement best practices around leveraging these technologies within their AWS cloud environments. Our consultants deliver proof-of-concept projects, reusable artifacts, reference architectures, and lead implementation projects to assist organizations in harnessing the power of their data and unlocking the potential of advanced NLP and AI capabilities. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have deep expertise in NLP/NLU, generative AI, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected be a US Citizen and obtain and maintain a security clearance at the TS/SCI with polygraph level. Upon start, the selected candidate will be sponsored for a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities In this role, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge generative AI solutions to address real-world challenges. - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Provide expertise and guidance in generative AI and document processing infrastructure, design, implementation, and optimization. - Maintain domain knowledge and expertise in generative AI, NLP, and NLU. - Architect and build large-scale solutions. - Build technical solutions that are secure, maintainable, scalable, reliable, performant, and cost-effective. - Identify and prepare metrics and reports for the internal team and for customers to delineate the value of their solution to the customer. - Identify, mitigate and communicate risks related to solution and service constraints by making technical trade-offs. - Participate in growing their team’s skills and help mentor internal and customer team members. - Provide guidance on the people, organizational, security and compliance aspects of AI/ML transformations for the customer. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Amazon's AGI Web & Knowledge Services group is seeking a passionate, talented, and inventive Applied Scientist to lead the development of industry-leading structured Information retrieval systems. As part of our cutting-edge AGI-SIR team, you will play a pivotal role in developing efficient AI solutions for Knowledge Graphs, Graph Search and Question Answering Systems. In this role, your work will focus on creating scalable and efficient AI-driven technologies that push the boundaries of information retrieval. You will work on a broad range of problems, from low-level data processing to the development of novel retrieval models, leveraging state-of-the-art machine learning methods. Key job responsibilities - Lead the development of advanced algorithms for knowledge graphs, graph search and question answering systems, guiding the team in solving complex problems and setting technical direction. - Design models that address customer needs, making informed trade-offs to balance accuracy, efficiency, and user experience. - Collaborate with engineering teams to implement successful models into scalable, reliable Amazon production systems. - Present results to technical and business audiences, ensuring clarity, statistical rigor, and relevance to business goals. - Establish and uphold high scientific and engineering standards, driving best practices across the team. - Promote a culture of experimentation and continuous learning within Amazon’s applied science community.
US, WA, Bellevue
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
LU, Luxembourg
Are you interested in building state-of-the-art machine learning systems for the most complex, and fastest growing, transportation network in the world? If so, Amazon has the most exciting, and never-before-seen, challenges at this scale (including those in sustainability, e.g. how to reach net zero carbon by 2040). Amazon’s transportation systems get millions of packages to customers worldwide faster and cheaper while providing world class customer experience – from online checkout, to shipment planning, fulfillment, and delivery. Our software systems include services that use tens of thousands of signals every second to make business decisions impacting billions of dollars a year, that integrate with a network of small and large carriers worldwide, that manage business rules for millions of unique products, and that improve experience of over hundreds of millions of online shoppers. As part of this team you will focus on the development and research of machine learning solutions and algorithms for core planning systems, as well as for other applications within Amazon Transportation Services, and impact the future of the Amazon delivery network. Current research and areas of work within our team include machine learning forecast, uncertainty quantification, planning systems, model interpretability, graph neural nets, among others. We are looking for a Machine Learning Scientist with a strong academic background in the areas of machine learning, time series forecasting, and/or optimization. At Amazon, we strive to continue being the most customer-centric company on earth. To stay there and continue improving, we need exceptionally talented, bright, and driven people. If you'd like to help us build the place to find and buy anything online, and deliver in the most efficient and greenest way possible, this is your chance to make history. About the team The EU ATS Science and Technology (SnT) team owns scalable algorithms, models and systems that improve customer experience in middle-mile. We work backwards from Amazon's customers aiming to make transportation faster, cheaper, safer, more reliable and ecologically sustainable.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech and retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations re-imagine buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes, unlocking our potential worldwide. Amazon Business Supplier Experience Science team is looking for Sr. Applied Scientist to excel at product and service pricing, selection, forecast and optimization. Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting, selection additions and operations optimization. Amazon Business is a fast growing business sector. We need leaders who can think big and drive big vision into a reality. Please come to work with us if you are result driven, think big, and want to have fun and make a history. You will build the science models and the supporting structures needed to analyze, dive deep, and innovate the pricing strategies. You will also have the opportunity to present findings to cross functional team partners to drive improvements. You will work closely with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to solve challenging problems. You need be comfortable using intellect, curiosity and technical ability to develop innovative solutions to business problems. You need learn different aspects of the business and understand how to apply science and analytics to solve high impact business problems. You will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. The ideal candidate will have leadership skills, proven ability to develop, enhance, automate, and manage science models from end to end. The ideal candidate will have data mining and modeling skills and will be comfortable facilitating idea creation and working from concept through to execution. The ideal candidate must have the ability to manage medium-scale automation and modeling projects, identify requirements and build methodology and tools that are mathematically grounded but also explainable operationally, apply technical skills allowing the models to adapt to changing attributes. Key job responsibilities • Contribute to supplier operations strategy development based on science models and data analysis • Develop models to measure long term impact of seller behaviors • Collaborate with product and engineering teams both within and outside of AB to launch selection and operations systems based on science and data. • Use optimization, statistical, machine learning and analytical techniques to create scalable solutions for business problems. • Design, development and evaluation of highly innovative models for forecast, optimization and experimentation. • Work and collaborate effectively with product managers and software engineering teams to build algorithms and models and integrate successful models and algorithms in production systems. • Contribute to Amazon's Intellectual Property through patents and internal and external publications A day in the life The scientist will develop, enhance, automate, and manage science models from end to end. The scientist will also have the opportunity to present findings to cross functional team partners to drive improvements. The scientist will work with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to build analytical and science models. The scientist will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. About the team Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting and selection additions.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Research Scientist, to lead the development of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Research Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - Drive applied science projects in machine learning end-to-end: from ideation over prototyping to launch. For example, starting from deep scientific thinking about new ways to support customers’ journeys through discovery, you analyze how customers discover, review and purchase Private Brands to innovate marketing and merchandising strategies. - Propose viable ideas to advance models and algorithms, with supporting argument, experiment, and eventually preliminary results. - Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions. - Present results, reports, and data insights to both technical and business leadership. - Constructively critique peer research and mentor junior scientists and engineers. - Innovate and contribute to Amazon’s science community and external research communities.