Amazon announces Ocelot quantum chip

Prototype is the first realization of a scalable, hardware-efficient quantum computing architecture based on bosonic quantum error correction.

Today we are happy to announce Ocelot, our first-generation quantum chip. Ocelot represents Amazon Web Services’ pioneering effort to develop, from the ground up, a hardware implementation of quantum error correction that is both resource efficient and scalable. Based on superconducting quantum circuits, Ocelot achieves the following major technical advances: 

  • The first realization of a scalable architecture for bosonic error correction, surpassing traditional qubit approaches to reducing error correction overhead;
  • The first implementation of a noise-biased gate — a key to unlocking the type of hardware-efficient error correction necessary for building scalable, commercially viable quantum computers;
  • State-of-the-art performance for superconducting qubits, with bit-flip times approaching one second in tandem with phase-flip times of 20 microseconds.
1920x1080_Ocelot.jpg
The pair of silicon microchips that compose the Ocelot logical-qubit memory chip.

We believe that scaling Ocelot to a full-fledged quantum computer capable of transformative societal impact would require as little as one-tenth as many resources as common approaches, helping bring closer the age of practical quantum computing.

The quantum performance gap

Quantum computers promise to perform some computations much faster — even exponentially faster — than classical computers. This means quantum computers can solve some problems that are forever beyond the reach of classical computing.

Practical applications of quantum computing will require sophisticated quantum algorithms with billions of quantum gates — the basic operations of a quantum computer. But current quantum computers’ extreme sensitivity to environmental noise means that the best quantum hardware today can run only about a thousand gates without error. How do we bridge this gap?

Quantum error correction: the key to reliable quantum computing

Quantum error correction, first proposed theoretically in the 1990s, offers a solution. By sharing the information in each logical qubit across multiple physical qubits, one can protect the information within a quantum computer from external noise. Not only this, but errors can be detected and corrected in a manner analogous to the classical error correction methods used in digital storage and communication.

Recent experiments have demonstrated promising progress, but today’s best logical qubits, based on superconducting or atomic qubits, still exhibit error rates a billion times larger than the error rates needed for known quantum algorithms of practical utility and quantum advantage.

The challenge of qubit overhead

While quantum error correction provides a path to bridging the enormous chasm between today’s error rates and those required for practical quantum computation, it comes with a severe penalty in terms of resource overhead. Reducing logical-qubit error rates requires scaling up the redundancy in the number of physical qubits per logical qubit.

Traditional quantum error correction methods, such as those using the surface error-correcting code, currently require thousands (and if we work really, really hard, maybe in the future, hundreds) of physical qubits per logical qubit to reach the desired error rates. That means that a commercially relevant quantum computer would require millions of physical qubits — many orders of magnitude beyond the qubit count of current hardware.

One fundamental reason for this high overhead is that quantum systems experience two types of errors: bit-flip errors (also present in classical bits) and phase-flip errors (unique to qubits). Whereas classical bits require only correction of bit flips, qubits require an additional layer of redundancy to handle both types of errors.

Although subtle, this added complexity leads to quantum systems’ large resource overhead requirement. For comparison, a good classical error-correcting code could realize the error rate we desire for quantum computing with less than 30% overhead, roughly one-ten-thousandth the overhead of the conventional surface code approach (assuming bit error rates of 0.5%, similar to qubit error rates in current hardware).

Cat qubits: an approach to more efficient error correction

Quantum systems in nature can be more complex than qubits, which consist of just two quantum states (usually labeled 0 and 1 in analogy to classical digital bits). Take for example the simple harmonic oscillator, which oscillates with a well-defined frequency. Harmonic oscillators come in all sorts of shapes and sizes, from the mechanical metronome used to keep time while playing music to the microwave electromagnetic oscillators used in radar and communication systems.

Classically, the state of an oscillator can be represented by the amplitude and phase of its oscillations. Quantum mechanically, the situation is similar, although the amplitude and phase are never simultaneously perfectly defined, and there is an underlying graininess to the amplitude associated with each quanta of energy one adds to the system.

These quanta of energy are what are called bosonic particles, the best known of which is the photon, associated with the electromagnetic field. The more energy we pump into the system, the more bosons (photons) we create, and the more oscillator states (amplitudes) we can access. Bosonic quantum error correction, which relies on bosons instead of simple two-state qubit systems, uses these extra oscillator states to more effectively protect quantum information from environmental noise and to do more efficient error correction.

One type of bosonic quantum error correction uses cat qubits, named after the dead/alive Schrödinger cat of Erwin Schrödinger's famous thought experiment. Cat qubits use the quantum superposition of classical-like states of well-defined amplitude and phase to encode a qubit’s worth of information. Just a few years after Peter Shor’s seminal 1995 paper on quantum error correction, researchers began quietly developing an alternative approach to error correction based on cat qubits.

A major advantage of cat qubits is their inherent protection against bit-flip errors. Increasing the number of photons in the oscillator can make the rate of the bit-flip errors exponentially small. This means that instead of increasing qubit count, we can simply increase the energy of an oscillator, making error correction far more efficient.

The past decade has seen pioneering experiments demonstrating the potential of cat qubits. However, these experiments have mostly focused on single-cat-qubit demonstrations, leaving open the question of whether cat qubits could be integrated into a scalable architecture.

Ocelot: demonstrating the scalability of bosonic quantum error correction

Today in Nature, we published the results of our measurements on Ocelot, and its quantum error correction performance. Ocelot represents an important step on the road to practical quantum computers, leveraging chip-scale integration of cat qubits to form a scalable, hardware-efficient architecture for quantum error correction. In this approach,

  • bit-flip errors are exponentially suppressed at the physical-qubit level;
  • phase-flip errors are corrected using a repetition code, the simplest classical error-correcting code; and
  • highly noise-biased controlled-NOT (C-NOT) gates, between each cat qubit and ancillary transmon qubits (the conventional qubit used in superconducting quantum circuits), enable phase-flip-error detection while preserving the cat’s bit-flip protection.
Ocelot logical qubit.png
Pictorial representation of the logical qubit as implemented in the Ocelot chip. The logical qubit is formed from a linear array of cat data qubits, transmon ancilla qubits, and buffer modes. A buffer mode connected to each of the cat data qubits, are used to correct for bit-flip errors, while a repetition code across the linear array of cat data qubits is used to detect and correct for phase-flip errors. The repetition code uses noise-biased controlled-not gate operations between each pair of neighboring cat data qubits and a shared transmon ancilla qubit to flag and locate phase-flip errors within the cat data qubit array. In this figure, a phase-flip (or Z) error has been detected on the middle cat data qubit.

The Ocelot logical-qubit memory chip, shown schematically above, consists of five cat data qubits, each housing an oscillator that is used to store the quantum data. The storage oscillator of each cat qubit is connected to two ancillary transmon qubits for phase-flip-error detection and paired with a special nonlinear buffer circuit used to stabilize the cat qubit states and exponentially suppress bit-flip errors.

Tuning up the Ocelot device involves calibrating the bit- and phase-flip error rates of the cat qubits against the cat amplitude (average photon number) and optimizing the noise-bias of the C-NOT gate used for phase-flip-error detection. Our experimental results show that we can achieve bit-flip times approaching one second, more than a thousand times longer than the lifetime of conventional superconducting qubits.

Critically, this can be accomplished with a cat amplitude as small as four photons, enabling us to retain phase-flip times of tens of microseconds, sufficient for quantum error correction. From there, we run a sequence of error correction cycles to test the performance of the circuit as a logical-qubit memory. In order to characterize the performance of the repetition code and the scalability of the architecture, we studied subsets of the Ocelot cat qubits, representing different repetition code lengths.

The logical phase-flip error rate was seen to drop significantly when the code distance was increased from distance-3 to distance-5 (i.e., from a code with three cat qubits to one with five) across a wide range of cat photon numbers, indicating the effectiveness of the repetition code.

When bit-flip errors were included, the total logical error rate was measured to be 1.72% per cycle for the distance-3 code and 1.65% per cycle for the distance-5 code. The comparability of the total error rate of the distance-5 code to that of the shorter distance-3 code, with fewer cat qubits and opportunities for bit-flip errors, can be attributed to the large noise bias of the C-NOT gate and its effectiveness in suppressing bit-flip errors. This noise bias is what allows Ocelot to achieve a distance-5 code with less than a fifth as many qubits — five data qubits and four ancilla qubits, versus 49 qubits for a surface code device.

What we scale matters

From the billions of transistors in a modern GPU to the massive-scale GPU clusters powering AI models, the ability to scale efficiently is a key driver of technological progress. Similarly, scaling the number of qubits to accommodate the overhead required of quantum error correction will be key to realizing commercially valuable quantum computers.

But the history of computing shows that scaling the right component can have massive consequences for cost, performance, and even feasibility. The computer revolution truly took off when the transistor replaced the vacuum tube as the fundamental building block to scale.

Ocelot represents our first chip with the cat qubit architecture, and an initial test of its suitability as a fundamental building block for implementing quantum error correction. Future versions of Ocelot are being developed that will exponentially drive down logical error rates, enabled by both an improvement in component performance and an increase in code distance.

Codes tailored to biased noise, such as the repetition code used in Ocelot, can significantly reduce the number of physical qubits required. In our forthcoming paper “Hybrid cat-transmon architecture for scalable, hardware-efficient quantum error correction”, we find that scaling Ocelot could reduce quantum error correction overhead by up to 90% compared to conventional surface code approaches with similar physical-qubit error rates.

We believe that Ocelot's architecture, with its hardware-efficient approach to error correction, positions us well to tackle the next phase of quantum computing: learning how to scale. Using a hardware-efficient approach will allow us to more quickly and cost effectively achieve an error-corrected quantum computer that benefits society.

Over the last few years, quantum computing has entered an exciting new era in which quantum error correction has moved from the blackboard to the test bench. With Ocelot, we are just beginning down a path to fault-tolerant quantum computation. For those interested in joining us on this journey, we are hiring for positions across our quantum computing stack. Visit Amazon Jobs and enter the keyword “quantum”.

Research areas

Related content

US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
CA, ON, Toronto
The RBKS AI team is responsible for innovating AI features for Ring and Blink cameras, with a mission to make our neighborhoods safer. We are working at the intersection of computer vision, generative AI (GenAI), and ambient intelligence. The team is seeking Applied Science Manager to lead initiatives that combine advanced computer vision and multimodal GenAI capabilities. This role offers a unique opportunity to lead a world-class team while shaping next-generation home security technology and advancing the field of AI algorithms and systems. The team is focused on productizing research in computer vision and GenAI into products that benefit millions of customers worldwide, such as real-time object detection, video understanding, and multimodal LLMs. We are at the forefront of developing AI solutions that seamlessly blend into our products while respecting privacy, delivering unprecedented levels of intelligent security experience. Key job responsibilities - Lead and guide a team of applied scientists in designing and developing advanced computer vision and GenAI models and algorithms for comprehensive video understanding, including but not limited to object detection, recognition and spatial understanding - Drive technical strategy and roadmap for privacy-preserving CV and GenAI models and systems, ensuring the team delivers efficient fine-tuning and on-device and in-cloud inference solutions - Partner with product and engineering leadership to translate business objectives into technical roadmaps, and ensure delivery of high-quality science artifacts that ship to products - Build and maintain strategic partnerships with science, engineering, product, and program management teams across the organization - Recruit, mentor, and develop top-tier applied science talent; provide technical and career guidance to team members while fostering a culture of innovation and excellence - Set technical direction and establish best practices for AI products/features across multiple projects and initiatives