Amazon announces Ocelot quantum chip

Prototype is the first realization of a scalable, hardware-efficient quantum computing architecture based on bosonic quantum error correction.

Today we are happy to announce Ocelot, our first-generation quantum chip. Ocelot represents Amazon Web Services’ pioneering effort to develop, from the ground up, a hardware implementation of quantum error correction that is both resource efficient and scalable. Based on superconducting quantum circuits, Ocelot achieves the following major technical advances: 

  • The first realization of a scalable architecture for bosonic error correction, surpassing traditional qubit approaches to reducing error correction overhead;
  • The first implementation of a noise-biased gate — a key to unlocking the type of hardware-efficient error correction necessary for building scalable, commercially viable quantum computers;
  • State-of-the-art performance for superconducting qubits, with bit-flip times approaching one second in tandem with phase-flip times of 20 microseconds.
1920x1080_Ocelot.jpg
The pair of silicon microchips that compose the Ocelot logical-qubit memory chip.

We believe that scaling Ocelot to a full-fledged quantum computer capable of transformative societal impact would require as little as one-tenth as many resources as common approaches, helping bring closer the age of practical quantum computing.

The quantum performance gap

Quantum computers promise to perform some computations much faster — even exponentially faster — than classical computers. This means quantum computers can solve some problems that are forever beyond the reach of classical computing.

Practical applications of quantum computing will require sophisticated quantum algorithms with billions of quantum gates — the basic operations of a quantum computer. But current quantum computers’ extreme sensitivity to environmental noise means that the best quantum hardware today can run only about a thousand gates without error. How do we bridge this gap?

Quantum error correction: the key to reliable quantum computing

Quantum error correction, first proposed theoretically in the 1990s, offers a solution. By sharing the information in each logical qubit across multiple physical qubits, one can protect the information within a quantum computer from external noise. Not only this, but errors can be detected and corrected in a manner analogous to the classical error correction methods used in digital storage and communication.

Recent experiments have demonstrated promising progress, but today’s best logical qubits, based on superconducting or atomic qubits, still exhibit error rates a billion times larger than the error rates needed for known quantum algorithms of practical utility and quantum advantage.

The challenge of qubit overhead

While quantum error correction provides a path to bridging the enormous chasm between today’s error rates and those required for practical quantum computation, it comes with a severe penalty in terms of resource overhead. Reducing logical-qubit error rates requires scaling up the redundancy in the number of physical qubits per logical qubit.

Traditional quantum error correction methods, such as those using the surface error-correcting code, currently require thousands (and if we work really, really hard, maybe in the future, hundreds) of physical qubits per logical qubit to reach the desired error rates. That means that a commercially relevant quantum computer would require millions of physical qubits — many orders of magnitude beyond the qubit count of current hardware.

One fundamental reason for this high overhead is that quantum systems experience two types of errors: bit-flip errors (also present in classical bits) and phase-flip errors (unique to qubits). Whereas classical bits require only correction of bit flips, qubits require an additional layer of redundancy to handle both types of errors.

Although subtle, this added complexity leads to quantum systems’ large resource overhead requirement. For comparison, a good classical error-correcting code could realize the error rate we desire for quantum computing with less than 30% overhead, roughly one-ten-thousandth the overhead of the conventional surface code approach (assuming bit error rates of 0.5%, similar to qubit error rates in current hardware).

Cat qubits: an approach to more efficient error correction

Quantum systems in nature can be more complex than qubits, which consist of just two quantum states (usually labeled 0 and 1 in analogy to classical digital bits). Take for example the simple harmonic oscillator, which oscillates with a well-defined frequency. Harmonic oscillators come in all sorts of shapes and sizes, from the mechanical metronome used to keep time while playing music to the microwave electromagnetic oscillators used in radar and communication systems.

Classically, the state of an oscillator can be represented by the amplitude and phase of its oscillations. Quantum mechanically, the situation is similar, although the amplitude and phase are never simultaneously perfectly defined, and there is an underlying graininess to the amplitude associated with each quanta of energy one adds to the system.

These quanta of energy are what are called bosonic particles, the best known of which is the photon, associated with the electromagnetic field. The more energy we pump into the system, the more bosons (photons) we create, and the more oscillator states (amplitudes) we can access. Bosonic quantum error correction, which relies on bosons instead of simple two-state qubit systems, uses these extra oscillator states to more effectively protect quantum information from environmental noise and to do more efficient error correction.

One type of bosonic quantum error correction uses cat qubits, named after the dead/alive Schrödinger cat of Erwin Schrödinger's famous thought experiment. Cat qubits use the quantum superposition of classical-like states of well-defined amplitude and phase to encode a qubit’s worth of information. Just a few years after Peter Shor’s seminal 1995 paper on quantum error correction, researchers began quietly developing an alternative approach to error correction based on cat qubits.

A major advantage of cat qubits is their inherent protection against bit-flip errors. Increasing the number of photons in the oscillator can make the rate of the bit-flip errors exponentially small. This means that instead of increasing qubit count, we can simply increase the energy of an oscillator, making error correction far more efficient.

The past decade has seen pioneering experiments demonstrating the potential of cat qubits. However, these experiments have mostly focused on single-cat-qubit demonstrations, leaving open the question of whether cat qubits could be integrated into a scalable architecture.

Ocelot: demonstrating the scalability of bosonic quantum error correction

Today in Nature, we published the results of our measurements on Ocelot, and its quantum error correction performance. Ocelot represents an important step on the road to practical quantum computers, leveraging chip-scale integration of cat qubits to form a scalable, hardware-efficient architecture for quantum error correction. In this approach,

  • bit-flip errors are exponentially suppressed at the physical-qubit level;
  • phase-flip errors are corrected using a repetition code, the simplest classical error-correcting code; and
  • highly noise-biased controlled-NOT (C-NOT) gates, between each cat qubit and ancillary transmon qubits (the conventional qubit used in superconducting quantum circuits), enable phase-flip-error detection while preserving the cat’s bit-flip protection.
Ocelot logical qubit.png
Pictorial representation of the logical qubit as implemented in the Ocelot chip. The logical qubit is formed from a linear array of cat data qubits, transmon ancilla qubits, and buffer modes. A buffer mode connected to each of the cat data qubits, are used to correct for bit-flip errors, while a repetition code across the linear array of cat data qubits is used to detect and correct for phase-flip errors. The repetition code uses noise-biased controlled-not gate operations between each pair of neighboring cat data qubits and a shared transmon ancilla qubit to flag and locate phase-flip errors within the cat data qubit array. In this figure, a phase-flip (or Z) error has been detected on the middle cat data qubit.

The Ocelot logical-qubit memory chip, shown schematically above, consists of five cat data qubits, each housing an oscillator that is used to store the quantum data. The storage oscillator of each cat qubit is connected to two ancillary transmon qubits for phase-flip-error detection and paired with a special nonlinear buffer circuit used to stabilize the cat qubit states and exponentially suppress bit-flip errors.

Tuning up the Ocelot device involves calibrating the bit- and phase-flip error rates of the cat qubits against the cat amplitude (average photon number) and optimizing the noise-bias of the C-NOT gate used for phase-flip-error detection. Our experimental results show that we can achieve bit-flip times approaching one second, more than a thousand times longer than the lifetime of conventional superconducting qubits.

Critically, this can be accomplished with a cat amplitude as small as four photons, enabling us to retain phase-flip times of tens of microseconds, sufficient for quantum error correction. From there, we run a sequence of error correction cycles to test the performance of the circuit as a logical-qubit memory. In order to characterize the performance of the repetition code and the scalability of the architecture, we studied subsets of the Ocelot cat qubits, representing different repetition code lengths.

The logical phase-flip error rate was seen to drop significantly when the code distance was increased from distance-3 to distance-5 (i.e., from a code with three cat qubits to one with five) across a wide range of cat photon numbers, indicating the effectiveness of the repetition code.

When bit-flip errors were included, the total logical error rate was measured to be 1.72% per cycle for the distance-3 code and 1.65% per cycle for the distance-5 code. The comparability of the total error rate of the distance-5 code to that of the shorter distance-3 code, with fewer cat qubits and opportunities for bit-flip errors, can be attributed to the large noise bias of the C-NOT gate and its effectiveness in suppressing bit-flip errors. This noise bias is what allows Ocelot to achieve a distance-5 code with less than a fifth as many qubits — five data qubits and four ancilla qubits, versus 49 qubits for a surface code device.

What we scale matters

From the billions of transistors in a modern GPU to the massive-scale GPU clusters powering AI models, the ability to scale efficiently is a key driver of technological progress. Similarly, scaling the number of qubits to accommodate the overhead required of quantum error correction will be key to realizing commercially valuable quantum computers.

But the history of computing shows that scaling the right component can have massive consequences for cost, performance, and even feasibility. The computer revolution truly took off when the transistor replaced the vacuum tube as the fundamental building block to scale.

Ocelot represents our first chip with the cat qubit architecture, and an initial test of its suitability as a fundamental building block for implementing quantum error correction. Future versions of Ocelot are being developed that will exponentially drive down logical error rates, enabled by both an improvement in component performance and an increase in code distance.

Codes tailored to biased noise, such as the repetition code used in Ocelot, can significantly reduce the number of physical qubits required. In our forthcoming paper “Hybrid cat-transmon architecture for scalable, hardware-efficient quantum error correction”, we find that scaling Ocelot could reduce quantum error correction overhead by up to 90% compared to conventional surface code approaches with similar physical-qubit error rates.

We believe that Ocelot's architecture, with its hardware-efficient approach to error correction, positions us well to tackle the next phase of quantum computing: learning how to scale. Using a hardware-efficient approach will allow us to more quickly and cost effectively achieve an error-corrected quantum computer that benefits society.

Over the last few years, quantum computing has entered an exciting new era in which quantum error correction has moved from the blackboard to the test bench. With Ocelot, we are just beginning down a path to fault-tolerant quantum computation. For those interested in joining us on this journey, we are hiring for positions across our quantum computing stack. Visit Amazon Jobs and enter the keyword “quantum”.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.