Amazon at ICLR: Graphs, time series, and more

Other paper topics include natural-language processing, dataset optimization, and the limits of existing machine learning techniques.

Time series forecasting and graph representations of data are both major topics of research at Amazon: time series forecasting is crucial to both supply chain optimization and product recommendation, and graph representations help make sense of the large datasets that are common at Amazon’s scale, such as the Amazon product catalogue.

Related content
Amazon’s Stefano Soatto on how learning representations came to dominate machine learning.

So it’s no surprise that both topics are well represented among the Amazon papers at the 2022 International Conference on Learning Representations (ICLR), which takes place this week. Another paper also touches on one of Amazon’s core scientific interests, natural-language processing, or computation involving free-form text inputs.

The remaining Amazon papers discuss more general machine learning techniques, such as data augmentation, or automatically selecting or generating training examples that can improve the performance of machine learning models. Another paper looks at dataset optimization more generally, proposing a technique that could be used to evaluate individual examples for inclusion in a dataset or exclusion from it. And two papers from Amazon Web Services’ Causal-Representation Learning team, which includes Amazon vice president and distinguished scientist Bernhard Schölkopf, examine the limitations of existing approaches to machine learning.

Graphs

Graphs represent data as nodes, usually depicted as circles, and edges, usually depicted as line segments connecting nodes. Graph-structured data can make machine learning more efficient, because the graph explicitly encodes relationships that a machine learning model would otherwise have to infer from data correlations.

Graph neural networks (GNNs) are a powerful tool for working with graph-structured data. Like most neural networks, GNNs produce embeddings, or fixed-length vector representations of input data, that are useful for particular computational tasks. In the case of GNNs, the embeddings capture information about both the object associated with a given node and the structure of the graph.

In real-world applications — say, a graph indicating which products tend to be purchased together — some nodes may not be connected to any others, and some connections may be spurious inferences from sparse data. In “Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods”, Amazon scientists present a method for handling nodes whose edge data is absent or erroneous.

Cold Brew data distribution 16x9.png
Cold Brew addresses the real-world problem in which graph representations of data feature potentially spurious connections (tail nodes) or absent connections (cold start). Figure from "Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods".

In a variation on knowledge distillation, they use a conventional GNN, which requires that each input node be connected to the rest of the graph, to train a teacher network that can produce embeddings for connected nodes. Then they train a standard multilayer perceptron — a student network — to mimic the teacher’s outputs. Unlike a conventional GNN, the student network doesn’t explicitly use structural data to produce embeddings, so it can also handle unconnected nodes. The method demonstrates significant improvements over existing methods of inferring graph structure on several benchmark datasets.

Across disciplines, AI research has recently seen a surge in the popularity of self-supervised learning, in which a machine learning model is first trained on a “proxy task”, which is related to but not identical to the target task, using unlabeled or automatically labeled data. Then the model is fine-tuned on labeled data for the target task.

With GNNs, the proxy tasks generally teach the network only how to represent node data. But in “Node feature extraction by self-supervised multi-scale neighborhood prediction”, Amazon researchers and their colleagues at the University of Illinois and UCLA present a proxy task that teaches the GNN how to represent information about graph structure as well. Their approach is highly scalable, working with graphs with hundreds of millions of nodes, and in experiments, they show that it improves GNN performance on three benchmark datasets, by almost 30% on one of them.

XRT for graph neighborhoods.png
XR-Transformer creates a hierarchical tree that sorts data into finer- and finer-grained clusters. In the context of graph neural networks, the clusters represent graph neighborhoods. Figure from "Node feature extraction by self-supervised multi-scale neighborhood prediction".

The approach, which builds on Amazon’s XR-Transformer model and is known as GIANT-XRT, has already been widely adopted and is used by the leading teams in several of the public Open Graph Benchmark competitions hosted by Stanford University (leaderboard 1 | leaderboard 2 | leaderboard 3).

Domain graph.png
Where traditional domain adaptation (left) treats all target domains the same, a new method (right) uses graphs to represent relationships between source and target domains. For instance, weather patterns in adjacent U.S. states tend to be more similar than the weather patterns in states distant from each other. Figure from “Graph-relational domain adaptation”.

A third paper, “Graph-relational domain adaptation”, applies graphs to the problem of domain adaptation, or optimizing a machine learning model to work on data with a different distribution than the data it was trained on. Conventional domain adaptation techniques treat all target domains the same, but the Amazon researchers and their colleagues at Rutgers and MIT instead use graphs to represent relationships among all source and target domains. For instance, weather patterns in adjacent U.S. states tend to be more similar than the weather patterns in states distant from each other. In experiments, the researchers show that their method improves on existing domain adaptation methods on both synthetic and real-world datasets.

Time series

Time series forecasting is essential to demand prediction, which Amazon uses to manage inventory, and it’s also useful for recommendation, which can be interpreted as continuing a sequence of product (say, music or movie) selections.

In “Bridging recommendation and marketing via recurrent intensity modeling”, Amazon scientists adapt existing mechanisms for making personal recommendations on the basis of time series data (purchase histories) to the problem of identifying the target audience for a new product.

UserRec 16x9.png
Product recommendation can be interpreted as a time-series-forecasting problem, in which a product is recommended according to its likelihood of continuing a sequence of purchases. Figure from "Bridging recommendation and marketing via recurrent intensity modeling".

Where methods for identifying a product’s potential customers tend to treat customers as atemporal collections of purchase decisions, the Amazon researchers instead frame the problem as optimizing both the product’s relevance to the customer and the customer’s activity level, or likelihood of buying any product in a given time span. In experiments, this improved the accuracy of a prediction model on several datasets.

One obstacle to the development of machine learning models that base predictions on time series data is the availability of training examples. In “PSA-GAN: Progressive self attention GANs for synthetic time series”, Amazon researchers propose a method for using generative adversarial networks (GANs) to artificially produce time series training data.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

GANs pit generators, which produce synthetic data, against discriminators, which try to distinguish synthetic data from real. The two are trained together, each improving the performance of the other.

The Amazon researchers show how to synthesize plausible time series data by progressively growing — or adding network layers to — both the generator and the discriminator. This enables the generator to first learn general characteristics that the time series as a whole should have, then learn how to produce series that exhibit those characteristics.

Data augmentation

In addition to the paper on synthetic time series, one of Amazon’s other papers at ICLR, “Deep AutoAugment”, also focuses on data augmentation.

It’s become standard practice to augment the datasets used to train machine learning models by subjecting real data to sequences of transformations. For instance, a training image for a computer vision task might be flipped, stretched, rotated or cropped, or its color or contrast might be modified. Typically, the first few transformations are selected automatically, based on experiments in which a model is trained and retrained, and then domain experts add a few additional transformations to try to make the modified data look like real data.

Related content
New method enables users to specify properties such as subject age, light direction, and pose in images produced by generative adversarial networks.

In “Deep AutoAugment”, former Amazon senior applied scientist Zhi Zhang and colleagues at Michigan State University propose a method for fully automating the construction of a data augmentation pipeline. The goal is to continuously add transformations that steer the feature distribution of the synthetic data toward that of the real data. To do that, the researchers use gradient matching, or identifying training data whose sequential updates to the model parameters look like those of the real data. In tests, this approach improved on 10 other data augmentation techniques across four sets of real data.

Natural-language processing

Many natural-language-processing tasks involve pairwise comparison of sentences. Cross-encoders, which map pairs of sentences against each other, yield the most accurate comparison, but they’re computationally intensive, as they need to compute new mappings for every sentence pair. Moreover, converting a pretrained language model into a cross-encoder requires fine-tuning it on labeled data, which is resource intensive to acquire.

Bi-encoders, on the other hand, embed sentences in a common representational space and measure the distances between them. This is efficient but less accurate.

In “Trans-encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations”, Amazon researchers, together with a former intern, propose a model that is trained in an entirely unsupervised way — that is, without unlabeled examples — and captures advantages of both approaches.

Trans-encoder.png
The trans-encoder training process, in which a bi-encoder trained in an unsupervised fashion creates training targets for a cross-encoder, which in turn outputs training targets for the bi-encoder.

The researchers begin with a pretrained language model, fine-tune it in an unsupervised manner using bi-encoding, then use the fine-tuned model to generate training targets for cross-encoding. They then use the outputs of the cross-encoding model to fine-tune the bi-encoder, iterating back and forth between the two approaches until training converges. In experiments, their model outperformed multiple state-of-the-art unsupervised sentence encoders on several benchmark tasks, with improvements of up to 5% over the best-performing prior models.

Dataset optimization

Weeding errors out of a dataset, selecting new training examples to augment a dataset, and determining how to weight the data in a dataset to better match a target distribution are all examples of dataset optimization. Assessing individual training examples’ contribution to the accuracy of a model, however, is difficult: retraining the model on a dataset with and without every single example is hardly practical.

In “DIVA: Dataset derivative of a learning task”, Amazon researchers show how to compute the dataset derivative: a function that can be used to assess a given training example’s utility relative to a particular neural-network model. During training, the model learns not only the weights of network parameters but also weights for individual training examples. The researchers show that, using a linearization technique, they can derive a closed-form equation for the dataset derivative, allowing them to assess the utility of a given training example without retraining the network.

DIVA weighting.png
Training examples that DIVA assigns high weights (left) and low (right) for the task of classifying aircraft. Figure from "DIVA: Dataset derivative of a learning task".

Limitations

“Machine learning ultimately is based on statistical dependencies,” Bernhard Schölkopf recently told Amazon Science. “Oftentimes, it's enough if we work at the surface and just learn from these dependencies. But it turns out that it's only enough as long as we're in this setting where nothing changes.”

The two ICLR papers from the Causal Representation Learning team explore contexts in which learning statistical dependencies is not enough. “Visual representation learning does not generalize strongly within the same domain” describes experiments with image datasets in which each image is defined by specific values of a set of variables — say, different shapes of different sizes and colors, or faces that are either smiling or not and differ in hair color or age.

The researchers test 17 machine learning models and show that, if certain combinations of variables or specific variable values are held out of the training data, all 17 have trouble recognizing them in the test data. For instance, a model trained to recognize small hearts and large squares has trouble recognizing large hearts and small squares. This suggests that we need revised training techniques or model designs to ensure that machine learning systems are really learning what they’re supposed to.

Visual representation learning.png
An illustration of the four methods of separating training data (black dots) and test data (red dots) in "Visual representation learning does not generalize strongly within the same domain".

Similarly, in “You mostly walk alone: Analyzing feature attribution in trajectory prediction”, members of the team consider the problem of predicting the trajectories of moving objects as they interact with other objects, an essential capacity for self-driving cars and other AI systems. For instance, if a person is walking down the street, and a ball bounces into her path, it could be useful to know that the person might deviate from her trajectory to retrieve the ball.

Adapting the game-theoretical concept of Shapley values, which enable the isolation of different variables’ contributions to an outcome, the researchers examine the best-performing recent models for predicting trajectories in interactive contexts and show that, for the most part, their predictions are based on past trajectories; they pay little attention to the influence of interactions.

Trajectory interactions.png
A new method enables the comparison of different trajectory prediction models according to the extent to which they use social interactions for making predictions (left: none; middle: weak; right: strong). The target agent, whose future trajectory is to be predicted, is shown in red, and modeled interactions are represented by arrows whose width indicates interaction strength. From "You mostly walk alone: Analyzing feature attribution in trajectory prediction".

The one exception is a models trained on a dataset of basketball video, where all the players’ movements are constantly coordinated. There, existing models do indeed learn to recognize the influence of interaction. This suggests that careful curation of training data could enable existing models to account for interactions when predicting trajectories.

Research areas

Related content

IL, Haifa
AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Are you an inventive, curious, and driven Applied Scientist with a strong background in AI and Deep Learning? Join Amazon’s AWS Multimodal generative AI science team and be a catalyst for groundbreaking advancements in Computer Vision, Generative AI, and foundational models. As part of the AWS Multimodal generative AI science team, you’ll lead innovative research projects, develop state-of-the-art algorithms, and pioneer solutions that will directly impact millions of Amazon customers. Leveraging Amazon’s vast computing power, you’ll work alongside a supportive and diverse group of top-tier scientists and engineers, contributing to products that redefine the industry. Key job responsibilities * Lead research initiatives in Multimodal generative AI, pushing the boundaries of model efficiency, accuracy, and scalability. * Design, implement, and evaluate deep learning models in a production environment. * Collaborate with cross-functional teams to transfer research outcomes into scalable AWS services. * Publish in top-tier conferences and journals, keeping Amazon at the forefront of innovation. * Mentor and guide other scientists and engineers, fostering a culture of scientific curiosity and excellence. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture: Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
AU, NSW, Sydney
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
DE, Berlin
The Community Feedback organization powers customer-generated features and insights that help customers use the wisdom of the community to make unregretted shopping decisions. Today our features include Customer Reviews, Content Moderation, and Customer Q&A (Ask), however our mission and charter are broader than these features. We are focused on building a rewarding and engaging experience for contributors to share their feedback, and providing shoppers with trusted insights based on this feedback to inform their shopping decision The Community Data & Science team is looking for a passionate, talented, and inventive Senior Applied Scientist with a background in AI, Gen AI, Machine Learning, and NLP to help build LLM solutions for Community Feedback. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team and are ready to make a lasting impact on the future of AI-powered shopping, we invite you to join us on this exciting journey to reshape shopping. Please visit https://www.amazon.science for more information. Key job responsibilities - As a Senior Applied Scientist, you will work on state-of-the-art technologies that will result in published papers. - However, you will not only theorize about the algorithms but also have the opportunity to implement them and see how they perform in the field. - Our team works on a variety of projects, including state-of-the-art generative AI, LLM fine-tuning, alignment, prompt engineering, and benchmarking solutions. - You will be also mentoring junior scientists on the team. About the team The Community Data & Science team focusses on analyzing, understanding, structuring and presenting customer-generated content (in the form of ratings, text, images and videos) to help customers use the wisdom of the community to make unregretted purchase decisions. We build and own ML models that help with i) shaping the community content corpus both in terms of quantity and quality, ii) extracting insights from the content and iii) presenting the content and insights to shoppers to eventually influence purchase decisions. Today, our ML models support experiences like content solicitation, submission, moderation, ranking, and summarization.
US, CA, Sunnyvale
Amazon's AGI Web & Knowledge Services group is seeking a passionate, talented, and inventive Applied Scientist to lead the development of industry-leading Information retrieval systems. As part of our cutting-edge AGI-IR team, you will play a pivotal role in developing efficient AI solutions for a multi-modal future at scale. In this role, you will work alongside renowned researchers and engineers to enable our customers to seamlessly interact with unstructured and semi-structured content through advanced capabilities like question answering, contextual search, and multi-turn dialogues. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with applied scientists and engineers to develop novel algorithms and modeling techniques to enable timely, relevant and delightful conversations. - Leverage Amazon's large-scale data and computing resources to accelerate advances in the state of the art. - Work backwards from customer needs and use that information to make trade-offs between different modeling approaches - Collaborate with software engineering teams to integrate successful experimental results into complex Amazon production systems - Report results to technical and business audiences in a manner that is statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment - Drive best practices, helping to set high scientific and engineering standards on the team - Promote the culture of experimentation and applied science at Amazon
US, WA, Seattle
AWS Industry Products (IP) is a new AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for an Applied Scientist who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations domains. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems. Key job responsibilities Using your in-depth expertise in machine learning and generative AI, you will deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun. Amazon Robotics is seeking students to join us for a 5-6 month internship (full-time, 40 hours per week) as Data Science Co-op. Please note that by applying to this role you would be considered for Data Scientist spring co-op and fall co-op roles on various Amazon Robotics teams. The internship/co-op project(s) and location are determined by the team the student will be working on. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics About the team Amazon empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.
US, WA, Seattle
Ever wonder how you can keep the world’s largest selection also the world’s safest and legally compliant selection? Then come join a team with the charter to monitor and classify the billions of items in the Amazon catalog to ensure compliance with various legal regulations. The Classification and Policy Platform (CPP) team is looking for Applied Scientists to build technology to automatically monitor the billions of products on the Amazon platform. The software and processes built by this team are a critical component of building a catalog that our customers trust. As an Applied Scientist on the CPP team, you will train LLMs to solve customer problems, distill knowledge into optimized inference artifacts, and collaborate cross-functionally to deliver impactful solutions. This role offers the opportunity to push the boundaries of LLM capabilities and drive tangible value for our customers. The ideal candidate should possess exceptional technical skills, a startup-driven mindset, outstanding communication abilities to join our dynamic team. We believe that innovation is key to being the most customer-centric company. We innovate, publish, teach, and set strategy, while using Amazon's "working backwards" method to serve our customers.
US, MA, Boston
As part of Alexa CAS team, our mission is to provide scalable and reliable evaluation of the state-of-the-art Conversational AI. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), to invent and build end-to-end evaluation of how customers perceive state-of-the-art context-aware conversational AI assistants. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel methods for evaluating conversational assistants. You will analyze and understand user experiences by leveraging Amazon’s heterogeneous data sources and build evaluation models using machine learning methods. Key job responsibilities - Design, build, test and release predictive ML models using LLMs - Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, and transformation. - Collaborate with colleagues from science, engineering and business backgrounds. - Present proposals and results to partner teams in a clear manner backed by data and coupled with actionable conclusions - Work with engineers to develop efficient data querying and inference infrastructure for both offline and online use cases About the team Central Analytics and Research Science (CARS) is an analytics, software, and science team within Amazon's Conversational Assistant Services (CAS) organization. Our mission is to provide an end-to-end understanding of how customers perceive the assistants they interact with – from the metrics themselves to software applications to deep dive on those metrics – allowing assistant developers to improve their services. Learn more about Amazon’s approach to customer-obsessed science on the Amazon Science website, which features the latest news and research from scientists across the company. For the latest updates, subscribe to the monthly newsletter, and follow the @AmazonScience handle and #AmazonScience hashtag on LinkedIn, Twitter, Facebook, Instagram, and YouTube.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Within Sponsored Products, the Bidding team is responsible for defining and delivering a collection of advertising products around bid controls (dynamic bidding, bid recommendations, etc.) that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Are you interested in working with the core Amazon Advertising teams and leading ad tech partners to spearhead innovation and deliver Identity solutions for our customers? Do you want to have direct and immediate impact on millions of customers every day? We are building the next generation of Identity products and services that will fuel the growth of Amazon’s advertising business. We are looking for self-driven and talented engineers to revel in designing, developing and operating extremely high volume (internet-scale), low latency systems that drive revenue to Amazon. This role will involve designing and developing software system that enable many use cases for WW Advertising. The individual in this role will have the responsibility help define requirements, create software design, implement code to these specifications, provide thorough unit and integration testing, and support products deployed in production and used by our stakeholders and customers. We’re looking for experienced, motivated software engineers with a proven track record of building low-latency / high volume ad serving systems and services. Bonus if you are also comfortable handling big data queries and analytics - that is an integral part of what we do. We use Java and AWS technologies heavily. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. A day in the life You will work collaboratively both within and outside of the Advertising team. As a Software Engineer, you would spend most of your time architecting, designing and coding and the rest in collaboration and discussion. Since we are now working remotely, we also like to have fun by taking time to celebrate each other and to spend time with happy hours. About the team Joining this team, you’ll experience the benefits of working in a dynamic, fast-paced environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading Internet companies. We provide a highly customer-centric, team-oriented environment. AdTech Identity Program (AIP) team is spearheading innovation for the existential challenge in AdTech today: The need for reliably establishing customer identity in a IDless world without 3P cookies or Device identifiers.