Amazon at ICLR: Graphs, time series, and more

Other paper topics include natural-language processing, dataset optimization, and the limits of existing machine learning techniques.

Time series forecasting and graph representations of data are both major topics of research at Amazon: time series forecasting is crucial to both supply chain optimization and product recommendation, and graph representations help make sense of the large datasets that are common at Amazon’s scale, such as the Amazon product catalogue.

Related content
Amazon’s Stefano Soatto on how learning representations came to dominate machine learning.

So it’s no surprise that both topics are well represented among the Amazon papers at the 2022 International Conference on Learning Representations (ICLR), which takes place this week. Another paper also touches on one of Amazon’s core scientific interests, natural-language processing, or computation involving free-form text inputs.

The remaining Amazon papers discuss more general machine learning techniques, such as data augmentation, or automatically selecting or generating training examples that can improve the performance of machine learning models. Another paper looks at dataset optimization more generally, proposing a technique that could be used to evaluate individual examples for inclusion in a dataset or exclusion from it. And two papers from Amazon Web Services’ Causal-Representation Learning team, which includes Amazon vice president and distinguished scientist Bernhard Schölkopf, examine the limitations of existing approaches to machine learning.

Graphs

Graphs represent data as nodes, usually depicted as circles, and edges, usually depicted as line segments connecting nodes. Graph-structured data can make machine learning more efficient, because the graph explicitly encodes relationships that a machine learning model would otherwise have to infer from data correlations.

Graph neural networks (GNNs) are a powerful tool for working with graph-structured data. Like most neural networks, GNNs produce embeddings, or fixed-length vector representations of input data, that are useful for particular computational tasks. In the case of GNNs, the embeddings capture information about both the object associated with a given node and the structure of the graph.

In real-world applications — say, a graph indicating which products tend to be purchased together — some nodes may not be connected to any others, and some connections may be spurious inferences from sparse data. In “Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods”, Amazon scientists present a method for handling nodes whose edge data is absent or erroneous.

Cold Brew data distribution 16x9.png
Cold Brew addresses the real-world problem in which graph representations of data feature potentially spurious connections (tail nodes) or absent connections (cold start). Figure from "Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods".

In a variation on knowledge distillation, they use a conventional GNN, which requires that each input node be connected to the rest of the graph, to train a teacher network that can produce embeddings for connected nodes. Then they train a standard multilayer perceptron — a student network — to mimic the teacher’s outputs. Unlike a conventional GNN, the student network doesn’t explicitly use structural data to produce embeddings, so it can also handle unconnected nodes. The method demonstrates significant improvements over existing methods of inferring graph structure on several benchmark datasets.

Across disciplines, AI research has recently seen a surge in the popularity of self-supervised learning, in which a machine learning model is first trained on a “proxy task”, which is related to but not identical to the target task, using unlabeled or automatically labeled data. Then the model is fine-tuned on labeled data for the target task.

With GNNs, the proxy tasks generally teach the network only how to represent node data. But in “Node feature extraction by self-supervised multi-scale neighborhood prediction”, Amazon researchers and their colleagues at the University of Illinois and UCLA present a proxy task that teaches the GNN how to represent information about graph structure as well. Their approach is highly scalable, working with graphs with hundreds of millions of nodes, and in experiments, they show that it improves GNN performance on three benchmark datasets, by almost 30% on one of them.

XRT for graph neighborhoods.png
XR-Transformer creates a hierarchical tree that sorts data into finer- and finer-grained clusters. In the context of graph neural networks, the clusters represent graph neighborhoods. Figure from "Node feature extraction by self-supervised multi-scale neighborhood prediction".

The approach, which builds on Amazon’s XR-Transformer model and is known as GIANT-XRT, has already been widely adopted and is used by the leading teams in several of the public Open Graph Benchmark competitions hosted by Stanford University (leaderboard 1 | leaderboard 2 | leaderboard 3).

Domain graph.png
Where traditional domain adaptation (left) treats all target domains the same, a new method (right) uses graphs to represent relationships between source and target domains. For instance, weather patterns in adjacent U.S. states tend to be more similar than the weather patterns in states distant from each other. Figure from “Graph-relational domain adaptation”.

A third paper, “Graph-relational domain adaptation”, applies graphs to the problem of domain adaptation, or optimizing a machine learning model to work on data with a different distribution than the data it was trained on. Conventional domain adaptation techniques treat all target domains the same, but the Amazon researchers and their colleagues at Rutgers and MIT instead use graphs to represent relationships among all source and target domains. For instance, weather patterns in adjacent U.S. states tend to be more similar than the weather patterns in states distant from each other. In experiments, the researchers show that their method improves on existing domain adaptation methods on both synthetic and real-world datasets.

Time series

Time series forecasting is essential to demand prediction, which Amazon uses to manage inventory, and it’s also useful for recommendation, which can be interpreted as continuing a sequence of product (say, music or movie) selections.

In “Bridging recommendation and marketing via recurrent intensity modeling”, Amazon scientists adapt existing mechanisms for making personal recommendations on the basis of time series data (purchase histories) to the problem of identifying the target audience for a new product.

UserRec 16x9.png
Product recommendation can be interpreted as a time-series-forecasting problem, in which a product is recommended according to its likelihood of continuing a sequence of purchases. Figure from "Bridging recommendation and marketing via recurrent intensity modeling".

Where methods for identifying a product’s potential customers tend to treat customers as atemporal collections of purchase decisions, the Amazon researchers instead frame the problem as optimizing both the product’s relevance to the customer and the customer’s activity level, or likelihood of buying any product in a given time span. In experiments, this improved the accuracy of a prediction model on several datasets.

One obstacle to the development of machine learning models that base predictions on time series data is the availability of training examples. In “PSA-GAN: Progressive self attention GANs for synthetic time series”, Amazon researchers propose a method for using generative adversarial networks (GANs) to artificially produce time series training data.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

GANs pit generators, which produce synthetic data, against discriminators, which try to distinguish synthetic data from real. The two are trained together, each improving the performance of the other.

The Amazon researchers show how to synthesize plausible time series data by progressively growing — or adding network layers to — both the generator and the discriminator. This enables the generator to first learn general characteristics that the time series as a whole should have, then learn how to produce series that exhibit those characteristics.

Data augmentation

In addition to the paper on synthetic time series, one of Amazon’s other papers at ICLR, “Deep AutoAugment”, also focuses on data augmentation.

It’s become standard practice to augment the datasets used to train machine learning models by subjecting real data to sequences of transformations. For instance, a training image for a computer vision task might be flipped, stretched, rotated or cropped, or its color or contrast might be modified. Typically, the first few transformations are selected automatically, based on experiments in which a model is trained and retrained, and then domain experts add a few additional transformations to try to make the modified data look like real data.

Related content
New method enables users to specify properties such as subject age, light direction, and pose in images produced by generative adversarial networks.

In “Deep AutoAugment”, former Amazon senior applied scientist Zhi Zhang and colleagues at Michigan State University propose a method for fully automating the construction of a data augmentation pipeline. The goal is to continuously add transformations that steer the feature distribution of the synthetic data toward that of the real data. To do that, the researchers use gradient matching, or identifying training data whose sequential updates to the model parameters look like those of the real data. In tests, this approach improved on 10 other data augmentation techniques across four sets of real data.

Natural-language processing

Many natural-language-processing tasks involve pairwise comparison of sentences. Cross-encoders, which map pairs of sentences against each other, yield the most accurate comparison, but they’re computationally intensive, as they need to compute new mappings for every sentence pair. Moreover, converting a pretrained language model into a cross-encoder requires fine-tuning it on labeled data, which is resource intensive to acquire.

Bi-encoders, on the other hand, embed sentences in a common representational space and measure the distances between them. This is efficient but less accurate.

In “Trans-encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations”, Amazon researchers, together with a former intern, propose a model that is trained in an entirely unsupervised way — that is, without unlabeled examples — and captures advantages of both approaches.

Trans-encoder.png
The trans-encoder training process, in which a bi-encoder trained in an unsupervised fashion creates training targets for a cross-encoder, which in turn outputs training targets for the bi-encoder.

The researchers begin with a pretrained language model, fine-tune it in an unsupervised manner using bi-encoding, then use the fine-tuned model to generate training targets for cross-encoding. They then use the outputs of the cross-encoding model to fine-tune the bi-encoder, iterating back and forth between the two approaches until training converges. In experiments, their model outperformed multiple state-of-the-art unsupervised sentence encoders on several benchmark tasks, with improvements of up to 5% over the best-performing prior models.

Dataset optimization

Weeding errors out of a dataset, selecting new training examples to augment a dataset, and determining how to weight the data in a dataset to better match a target distribution are all examples of dataset optimization. Assessing individual training examples’ contribution to the accuracy of a model, however, is difficult: retraining the model on a dataset with and without every single example is hardly practical.

In “DIVA: Dataset derivative of a learning task”, Amazon researchers show how to compute the dataset derivative: a function that can be used to assess a given training example’s utility relative to a particular neural-network model. During training, the model learns not only the weights of network parameters but also weights for individual training examples. The researchers show that, using a linearization technique, they can derive a closed-form equation for the dataset derivative, allowing them to assess the utility of a given training example without retraining the network.

DIVA weighting.png
Training examples that DIVA assigns high weights (left) and low (right) for the task of classifying aircraft. Figure from "DIVA: Dataset derivative of a learning task".

Limitations

“Machine learning ultimately is based on statistical dependencies,” Bernhard Schölkopf recently told Amazon Science. “Oftentimes, it's enough if we work at the surface and just learn from these dependencies. But it turns out that it's only enough as long as we're in this setting where nothing changes.”

The two ICLR papers from the Causal Representation Learning team explore contexts in which learning statistical dependencies is not enough. “Visual representation learning does not generalize strongly within the same domain” describes experiments with image datasets in which each image is defined by specific values of a set of variables — say, different shapes of different sizes and colors, or faces that are either smiling or not and differ in hair color or age.

The researchers test 17 machine learning models and show that, if certain combinations of variables or specific variable values are held out of the training data, all 17 have trouble recognizing them in the test data. For instance, a model trained to recognize small hearts and large squares has trouble recognizing large hearts and small squares. This suggests that we need revised training techniques or model designs to ensure that machine learning systems are really learning what they’re supposed to.

Visual representation learning.png
An illustration of the four methods of separating training data (black dots) and test data (red dots) in "Visual representation learning does not generalize strongly within the same domain".

Similarly, in “You mostly walk alone: Analyzing feature attribution in trajectory prediction”, members of the team consider the problem of predicting the trajectories of moving objects as they interact with other objects, an essential capacity for self-driving cars and other AI systems. For instance, if a person is walking down the street, and a ball bounces into her path, it could be useful to know that the person might deviate from her trajectory to retrieve the ball.

Adapting the game-theoretical concept of Shapley values, which enable the isolation of different variables’ contributions to an outcome, the researchers examine the best-performing recent models for predicting trajectories in interactive contexts and show that, for the most part, their predictions are based on past trajectories; they pay little attention to the influence of interactions.

Trajectory interactions.png
A new method enables the comparison of different trajectory prediction models according to the extent to which they use social interactions for making predictions (left: none; middle: weak; right: strong). The target agent, whose future trajectory is to be predicted, is shown in red, and modeled interactions are represented by arrows whose width indicates interaction strength. From "You mostly walk alone: Analyzing feature attribution in trajectory prediction".

The one exception is a models trained on a dataset of basketball video, where all the players’ movements are constantly coordinated. There, existing models do indeed learn to recognize the influence of interaction. This suggests that careful curation of training data could enable existing models to account for interactions when predicting trajectories.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking an Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Develop and implement personalized marketing strategies and campaigns tailored to individual customer preferences, behaviors, and demographics to enhance engagement and drive customer loyalty. • Develop, implement, and optimize marketing attribution models to accurately measure the impact of various marketing channels and campaigns, and create valuation frameworks to assess the ROI and contribution of each channel to overall business objectives. • Work with a group of both applied scientists and software engineers to deliver machine-learning and data science solutions to production. • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor talented members, provide technical and career development guidance to both scientists and engineers in the organization. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field.
US, WA, Seattle
Amazon’s eCommerce Foundation (eCF) organization provides the core technologies that drive and power Amazon's Stores, Digital, and Other (SDO) businesses. Millions of customer page views and orders per day are enabled by the systems eCF builds from the ground up. CloudTune, within eCF, empowers growth and business agility needs by automatically and efficiently managing AWS capacity and business processes needed to safely meet Amazon’s customer demand. CloudTune serves its primary customers, internal software teams, through forecast driven automation of cost controllership, capacity management and scaling. We predict expected load, and drive procurement and allocation of AWS capacity for new product launches and high velocity events like Prime Day and Cyber Monday. CloudTune, in partnership with Region Flexibility, is driving an SDO-wide program to diversify our use of AWS regions beyond DUB, IAD, and PDX regions. The objective of the Diversify AWS Region Usage (DARU) program is to mitigate the risk of capacity concentration by encouraging teams to design workloads that are region-flexible, utilize AWS automation such as Flexible Fleets to access multiple capacity pools, and optimize workload placement so SDO efficiently utilizes AWS. This is a strategic, highly visible, multi-year program which spans all Amazon business. CloudTune is looking for a Data Scientist to join our forecasting team and support DARU program. The team develops sophisticated algorithms that involve learning from large amounts of past data, such as actual sales, website traffic, merchandising activities, promotions, similar products and product attributes to forecast the demand for our compute infrastructure. These forecasts are used to determine the level of investment in capital expenditures, promotional activity, engineering efficiency projects and determining financial performance. As a Data Scientist CloudTune, you will work with other scientists, software engineers, data engineers, and product managers on a variety of important applied machine learning problems in the area of time series modeling. You will be an expert at communicating insights and recommendations to audiences of varying levels of technical sophistication. You will lead the design, implementation, and delivery of data science solutions for complex capacity planning problems. Key job responsibilities - Research and develop new methodologies for capacity demand forecasting. - Translate analytic insights into concrete, actionable recommendations for business or product improvement. Develop and present these as papers to senior stakeholders. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Drive scalable solutions for multi-year capacity demand forecasting horizons. - Play an integral role in developing a roadmap to expand and enhance demand forecasting for cloud compute resources. - Create and track accuracy and performance metrics (both technical and business metrics). - Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and innovative applied scientist with a strong background in deep learning and speech processing techniques. You will have an enormous opportunity to impact the customer experience, design, architecture, and implementation of an industry-leading product used every day by people you know. As an Applied Scientist, you will leverage Amazon’s heterogeneous data sources and large-scale computing resources to develop novel machine learning algorithms to advance the state of the art in speech and audio processing. Key job responsibilities · Conduct applied research project(s) effectively and know when to ask for help and when to work independently · Engage with an experienced cross-disciplinary staff to conceive and design innovative solutions for consumer products. · Actively participate and contribute to research activities including publications and patents · Work closely with an internal inter-disciplinary team, and outside partners to drive key aspects of product definition, execution and test. · Be proactive, flexible and able to succeed within an open collaborative peer environment
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to work on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: Hardware-informed efficient model architecture, training objective and curriculum design Distributed training, accelerated optimization methods Continual learning, multi-task/meta learning Reasoning, interactive learning, reinforcement learning Robustness, privacy, model watermarking Model compression, distillation, pruning, sparsification, quantization A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful start-ups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.