Amazon Halo Rise advances the future of sleep

Built-in radar technology, deep domain adaptation for sleep stage classification, and low-latency incremental sleep tracking enable Halo Rise to deliver a seamless, no-contact way to help customers improve sleep.

The benefits of quality sleep are well documented, and sleep affects nearly every aspect of our physical and emotional well-being. Yet one in three adults doesn’t get enough sleep. Given Amazon’s expertise in machine learning and radar technology innovation, we wanted to invent a device that would help customers improve their sleep by looking holistically at the factors that contribute to a good night’s rest.

That’s why we’re excited to announce that Amazon has unveiled its first dedicated sleep device — Halo Rise, a combined bedside sleep tracker, wake-up light, and smart alarm. Powered by custom machine learning algorithms and a suite of built-in sensors, Halo Rise accurately determines users’ sleep stages and provides valuable insights that can be used to optimize their sleep, including information about their sleep environments. Halo Rise has no sensors to wear, batteries to charge, or apps to open. And since a good wake-up experience is core to good sleep, Halo Rise features a wake-up light and smart alarm, designed to help customers start the day feeling rested and alert.

Halo Rise in action
A built-in radar sensor uses ultralow-power radio signals to sense respiration and movement patterns and determine sleep stages.

Designing with customer trust as our foundation

Customer privacy and safety are foundational to Halo Rise, and that's evident in both the hardware design and the technologies used to power the experience. Halo Rise features neither a camera nor a microphone and instead relies on ambient radar technology and machine learning to accurately determine sleep stages: deep, light, REM (rapid eye movement), and awake.

The technology at the core of Halo Rise is a built-in radar sensor that safely emits and receives an ultralow-power radio signal. The sensor uses phase differences between reflected signals at different antennas to measure movement and distance. Through on-chip signal processing, Halo Rise produces a discrete waveform corresponding to the user’s respiration. The device cannot detect noise or visual identifiers associated with an individual user, such as body images.

Using built-in radar technology enables us to prioritize customer privacy while still delivering accurate measurements and useful results. Customers have the option to manually put Halo Rise into Standby mode, which turns off the device’s ability to detect someone’s presence or track sleep.

Halo Rise hardware design
Halo Rise features a suite of sensors to accurately track your sleep and measure your room’s temperature, humidity, and light levels. 

Intuitive and accurate experience

To design the sleep-tracking algorithm that powers Halo Rise, we thought about the most common bedtime behaviors and the ways in which customers and their families (pets included) might engage with the bedroom. This led us to innovate on five main technological fronts:

  • Presence detection: Halo Rise activates its sleep detection only when someone is in range of the sensor. Otherwise, the device remains in a monitoring mode, where no data is transmitted to the cloud.
  • Primary-user tracking: Halo Rise distinguishes the sleep of the primary user (the user closest to the device) from that of other people or pets in the same bed, even though the respiration signal cannot be associated with individual users.
  • Sleep intent detection: Halo Rise detects when the user first starts trying to sleep and distinguishes that attempt from other in-bed activities — such as reading or watching TV — to accurately measure the time it takes to fall asleep, an important indicator of sleep health.
  • Sleep stage classification: Halo Rise reliably correlates respiration-driven movement signals with sleep stages.
  • Smart-alarm integration: During the user’s alarm window, the Halo Rise smart alarm checks the user’s sleep stage every few minutes to detect light sleep, while also maximizing sleep duration.
Halo-Vienna-MM_Wave-Chart.png
A combination of breathing and movement patterns enables Halo Rise to determine the primary user for the sleep session and to measure that person’s sleep throughout the night.

Presence detection

Halo Rise has an easy setup process. To get started, a customer will place Halo Rise on their bedside table facing their chest and note in the Amazon Halo app what side of the bed they sleep on — and that’s it: Halo Rise is ready to go. The radar sensor detects motion within a 3-D geometric volume that fans out from the sensor, an area called the detection zone. Within this zone, the presence detection algorithm estimates the location of the bed and an “out-of-bed” area between the bed and the device.

On-chip algorithms detect the motion and location of respiration events within the detection zone. In both cases — motion and respiration — the algorithm evaluates the quality of the signals. On that basis, it computes a score indicating its confidence that the readings are reliable and a user is present. Only if the confidence score crosses a reliability threshold does Halo Rise begin streaming sensor data to the cloud, where it is processed by the primary-user-tracking algorithm.

Radar Fan.png
The Halo Rise detection zone is the region within which the radar sensor senses motion and location.

Primary-user tracking

We know that many of our customers share their beds, be it with other people or with pets, so our algorithms are designed to track the sleep of only the primary user. Halo Rise starts a sleep session after it detects someone’s presence within the detection zone for longer than five minutes. From there, the primary-user-tracking algorithm runs continuously in the background, sensing the closest user’s sleep stages. As long as the user sleeps on their side of the bed, and their partner sleeps on the other side, Halo Rise will track the primary user’s sleep quality irrespective of who comes to bed first and who leaves the bed last.

During the sleep session, Halo Rise dynamically monitors changes in the user’s distance from the sensor, the respiration signal quality, and abrupt changes in respiration patterns that indicate another person’s presence. These changes cause the algorithm to reassess whether it’s actually sensing the intended user and to ignore the data unrelated to the primary user. For instance, if the user gets into bed after their partner has already fallen asleep, or if they use the restroom in the middle of the night, Halo Rise detects that and adjusts the sleep results accordingly.

Sleep intent detection

Another big algorithmic challenge we faced was determining when a user is quietly sitting in bed reading their Kindle or watching TV rather than trying to fall asleep. The time it takes to fall asleep (also known as sleep latency) is an important indicator of sleep health. Too short of a time may result from sleep deprivation, while too long of a time may be due to difficulty winding down.

To address this problem, we used a combination of presence and primary-user tracking along with a machine-learning model trained and evaluated on tens of thousands of hours of sleep diaries to accurately identify when the user is trying to sleep. The model uses sensor data streamed from the device — including respiration, movement, and distance — to generate a sleep intent score. The score is then post-processed by a regularized change-point detection algorithm to determine when the user is trying to fall asleep or wake up.

Halo Rise Sleep Intent v2.png
A machine learning model trained on thousands of hours of sleep uses respiration, movement, and distance data to generate a sleep intent score.

Sleep stage classification

Wearable health trackers like Halo Band and Halo View use heart rate and motion signals to determine sleep stages during the night, but Halo Rise uses respiration. To learn how to reliably recognize those stages, we needed to develop new machine learning models.

We pretrained a deep-learning model to predict sleep stages using a rich and diverse clinical dataset that included tens of thousands of hours of sleep collected by academic and research sources. The research included sleep data measured using the clinical gold standard, polysomnography (PSG). PSG studies use a large array of sensors attached to the body to measure sleep, including respiratory inductance plethysmography (RIP) sensors, whose output is analogous to the respiration data measured by Halo Rise.

Pretraining the model to predict sleep stages from RIP sensors enabled it to develop meaningful representations of the relationship between respiration and sleep prior to additional training on radar datasets collected alongside PSG. To collect radar training data for the models, we partnered with sleep clinics to conduct thousands of hours of PSG studies. Ultimately, this enables our models to classify sleep stages using just a built-in radar in the comfort of a customer’s home.

Halo_hypnogram.png
In the morning, customers can access a sleep hypnogram that provides a detailed breakdown of time spent in each sleep stage throughout the night.

A smarter wake-up experience

When woken naturally during a light sleep stage, people are most likely to feel rested, refreshed, and ready to tackle the day. Consequently, Halo Rise features a wake-up light, which gently simulates the colors and gradual brightening of a sunrise, and a smart alarm. Customers can also set an audible smart alarm that’s integrated with our sleep stage classification algorithms, optimizing their wake experience. Ahead of their scheduled wake-up time, the audible smart alarm monitors their sleep stages and wakes them up at their ideal time for getting up. This combination of wake-up light and smart alarm is shown to increase cognitive and physical performance throughout the day.

The smart-alarm algorithms are trained around two factors: sensing when the user is in light sleep and maximizing the user’s sleep duration. For the first component, Halo Rise needs to continuously monitor sleep stages during the alarm window — the 30 minutes before a user’s scheduled alarm — to identify when the user has entered a light sleep stage, known as the “wake window.”

At this phase, our algorithms work to sense “wakeable events,” such as a change in motion or breathing. This requires incrementally computing sleep stages to trigger the alarm with low latency. Unlike many sleep algorithms, Halo Rise does not require data from the entirety of the sleep session to classify sleep stages, allowing predictions to be used directly for alarm triggers as data is streamed.

For the second component, the system’s models are trained to predict the latest moment to trigger the alarm during the wake window. This ensures that as the user drifts between sleep stages, they are getting those crucial minutes of additional sleep before the alarm goes off.

The Halo Rise wake-up light
Halo Rise identifies a “wake window” when the user is in light sleep, while also maximizing sleep duration before activating an audible smart alarm.

A solution you can trust

To evaluate our machine learning algorithms, we collected thousands of hours of sleep studies comparing Halo Rise to PSG for over a hundred sleepers, developed with input from leading sleep labs. While sleep studies are typically conducted in sleep labs, we performed in-home PSG studies at participants’ homes under supervision of registered PSG technologists to test the device in naturalistic settings.

We used three different registered PSG technologists to reliably annotate ground truth sleep stages per the American Academy of Sleep Medicine’s scoring rules. We then compared Halo Rise’s outputs to the ground truth sleep data across 14 different sleep metrics — including time asleep, time awake, time to fall asleep, and accuracy for every 30 seconds — following analysis guidelines from a standardized framework for sleep stage classification assessment. This evaluation was supplemented by thousands of sleep diaries from our beta trials, expanding our evaluation to a diverse population of adults to account for variations in preferred sleep postures, age, body shapes, and other background conditions.

What’s next?

As we look to invent new products that help our customers live better longer, Halo Rise is an important step in giving our customers greater agency over their health and well-being. By looking holistically at the end-to-end sleep experience — not just going to sleep but also getting up in the morning — Halo Rise unlocks an entirely new way for customers to understand and manage sleep. We’re excited to help them make sense of valuable sleep data, from the quality and quantity of their sleep to their room’s environment, and deliver actionable insights and resources to improve it in the future. Halo Rise is just getting started, and we are going to learn from our customers how this technology can continue to evolve and become even more personalized to better meet their needs.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. As a Senior Applied Scientist at Amazon Ads, you will: • Research and implement cutting-edge machine learning (ML) approaches, including applications of generative AI and large language models • Develop and deploy innovative ML solutions spanning multiple disciplines, from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models • Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data • Build and optimize models that balance multiple stakeholder needs, helping customers discover relevant products while enabling advertisers to achieve their goals efficiently • Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams that include engineers, product managers, and other scientists • Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact • Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As an Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience A day in the life Why you will love this role: This role offers unprecedented breadth in ML applications, and access to extensive computational resources and rich datasets that enable you to build truly innovative solutions. You'll work on projects that span the full advertising lifecycle - from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll also work alongside talented engineers, scientists and product leaders in a culture that encourages innovation, experimentation, and bias for action where you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. About the team Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their mark. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two applied scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents for our autonomous campaigns experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Autonomous Campaigns team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware campaign creation and management system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The AGI Autonomy Perception team performs applied machine learning research, including model training, dataset design, pre- and post- training. We train Nova Act, our state-of-the art computer use agent, to understand arbitrary human interfaces in the digital world. We are seeking a Machine Learning Engineer who combines strong ML expertise with software engineering excellence to scale and optimize our ML workflows. You will be a key member on our research team, helping accelerate the development of our leading computer-use agent. We are seeking a strong engineer who has a passion for scaling ML models and datasets, designing new ML frameworks, improving engineering practices, and accelerating the velocity of AI development. You will be hired as a Member of Technical Staff. Key job responsibilities * Design, build, and deploy machine learning models, frameworks, and data pipelines * Optimize ML training, inference, and evaluation workflows for reliability and performance * Evaluate and improve ML model performance and metrics * Develop tools and infrastructure to enhance ML development productivity
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. This position will be part of the Conversational Ad Experiences team within the Amazon Advertising organization. Our cross-functional team focuses on designing, developing and launching innovative ad experiences delivered to shoppers in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. We are seeking a science leader for our team within the Sponsored Products & Brands organization. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and ads recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities - Serve as a tech lead for defining the science roadmap for multiple projects in the conversational ad experiences space powered by LLMs. - Build POCs, optimize and deploy models into production, run experiments, perform deep dives on experiment data to gather actionable learnings and communicate them to senior leadership - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Work closely with product managers to contribute to our mission, and proactively identify opportunities where science can help improve customer experience - Research new machine learning approaches to drive continued scientific innovation - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences - Help attract and recruit technical talent, mentor scientists and engineers in the team
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders