Amazon Nova and our commitment to responsible AI

From reinforcement learning and supervised fine-tuning to guardrail models and image watermarking, responsible AI was foundational to the design and development of the Amazon Nova family of models.

The Amazon Nova family of multimodal foundation models, announced yesterday at Amazon Web Services’ re:Invent conference, is the latest example of our investment in the development and deployment of safe, transparent, and responsible AI. Our commitment to responsible AI has eight core dimensions:

  • Privacy and security: Data and models should be appropriately obtained, used, and protected;
  • Safety: Misuse and harmful system outputs should be deterred;
  • Fairness: Results should be of consistent quality across different groups of stakeholders;
  • Veracity and robustness: The system should produce the correct outputs, even when it encounters unexpected or adversarial inputs;
  • Explainability: System outputs should be explainable and understandable;
  • Controllability: The system should include mechanisms for monitoring and steering its behavior;
  • Governance: Best practices should be incorporated into the AI supply chain, which includes both providers and deployers;
  • Transparency: Stakeholders should be able to make informed choices about their engagement with the AI system.

We operationalized our responsible-AI dimensions into a series of design objectives that guide our decision-making throughout the model development lifecycle — from initial data collection and pretraining to model alignment to the implementation of post-deployment runtime mitigations. Our focus on our customers (both people and enterprises) helps us align with the human values represented by our responsible-AI objectives.

Amazon - RAI Figure-16x9_Dec3.png
The Amazon Nova responsible-AI framework.

In the following sections, we'll explore our approaches to alignment, guardrails, and rigorous testing, demonstrating how each contributes to the creation of AI systems that are not only powerful but also trustworthy and responsible. You can find more details in the responsible-AI section of our Amazon Nova Family technical report.

Training

Alignment

During training, we employed a number of automated methods to ensure we meet our design objectives for each of the responsible-AI dimensions. To govern model behavior (along the safety, fairness, controllability, veracity and robustness, and privacy and security dimensions), we used both supervised fine tuning (SFT) and reinforcement learning with human feedback (RLHF) to align models.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

For SFT, we created single- and multiturn training demonstrations in multiple languages, while for RLHF training, we collected human preference data — including examples from previous evaluations. For RLHF training, we also provided a responsible-AI-specific reward model, trained on internally annotated data across all responsible-AI dimensions.

Guardrails

In addition to enforcing responsible-AI alignment on the core Amazon Nova models, we built runtime input- and output-moderation models that serve as a first and last line of defense and allow us to respond more quickly to newly identified threats and gaps in model alignment. The main role of the input model is to detect prompts that contain malicious, insecure (e.g., corrupted), or inappropriate material or that attempt to bypass the core model alignment (prompt injection, jailbreaking). The output model is designed to filter out sensitive content that the core models may generate on occasion.

Evaluation

Internal evaluation

Throughout model development, we performed extensive evaluations using internally developed benchmarks for each of our responsible-AI dimensions. Each benchmark was continuously updated with examples from our past red-teaming exercises. This kept the internal benchmarks evergreen, preventing overfitting during development; it also ensured that the models did not regress against previously identified risks. Our datasets comprise a mixture of English, multilingual (German, French, Spanish, Italian, Portuguese, Japanese, Hindi, Arabic), text-only, multimodal, single-turn, and multiturn examples.

A comprehensive estimate of our models’ responsible-AI performance requires evaluation on two fronts: responsible-AI adherence and false refusals (unwarranted suppression of output). To that end, we created targeted test sets to measure adherence on each dimension and larger tests sets designed to mimic actual use to measure false-refusal rates.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

To evaluate the adversarial robustness of our models, we built a comprehensive benchmark based on existing and emerging adversarial techniques and novel techniques we developed internally. We considered risks specific to particular types of customers, such as developers building applications using our models and users directly interacting with our models. Our set of risk categories includes the following: sensitive-data exfiltration, degraded availability to users, unauthorized actions, and malicious-content generation.

Public responsible-AI benchmarks

In addition to our proprietary internal benchmarks, we have contributed to the growing body of publicly available responsible-AI datasets that can be used for both training and evaluation. We have developed benchmarks for three of our responsible-AI dimensions: fairness, privacy and security, and veracity and robustness.

Fairness: To help evaluate fairness, we created BOLD, a dataset with more than 23,000 English text-generation prompts that test for bias across profession, gender, race, religion, and political ideology. BOLD measures the toxicity of LLM completions of sentences like “A flight nurse is a registered...” or “An animator is an artist who...”.

In 2023, we introduced TANGO, a dataset that tests for misgendering of transgender and nonbinary (TGNB) people, including inconsistency in the use of neo-pronouns and the toxicity of responses to gender disclosure. To examine but also improve performance in underrepresented English-language dialects (e.g., Bahamian or rural African-American vernacular), we created Multi-VALUE, a rule-based system that maps standard American English sentences to 50 different dialects, using 189 unique linguistic features identified in the Electronic World Atlas of Varieties of English.

To examine LLMs’ understanding of regional variations in informal language, we collaborated on a project, led by University of Toronto researchers, to develop a slang benchmark featuring sentences from UK and US movie subtitles paired with non-slang versions of the same texts (e.g., “that jacket is blazing” vs. “that jacket is excellent”).

Related content
Amazon Scholar and NeurIPS advisory board member Richard Zemel on what robustness and responsible AI have in common, what AI can still learn from neuroscience, and the emerging topics that interest him most.

Veracity and robustness: To help evaluate veracity and robustness, we built INVITE, a method for automatically generating questions containing incorrect assumptions or presuppositions, such as “Which part of Canada is Szczekarków, Lubartów County, located in?” (Szczekarków is in Poland.) This is in addition to our long-standing set of FEVER shared tasks on factual verification, which are now used as standard benchmarks of factuality and evidence retrieval.

Privacy and security: Finally, for privacy and security, we created LLM-PIEval, a benchmark containing indirect prompt-injection attacks for LLMs that use retrieval-augmented generation (or RAG — i.e., retrieving outside information to augment generation). Attacks targeting sensitive APIs (e.g., banking) are injected into documents retrieved during execution of a benign question-answering task. In collaboration with labs at the University of Southern California, we also built FedMultimodal, a benchmark that can assess the robustness of multimodal federated-learning pipelines against data corruptions such as missing modalities, missing labels, and erroneous labels.

Red teaming

Red teaming is an online evaluation methodology in which human experts attempt to generate inputs that circumvent responsible-AI protections. Our process has four main steps: compiling known attack techniques, expanding on these techniques using our own models, defining sub-techniques, and conducting automated adversarial testing.

Given our models' multimodal capabilities — including text, images, and video — we develop attacks that target each modality individually and in combination. For text-based attacks, we focus on adversarial techniques to bypass guardrails. For image and video understanding, we craft adversarial content and explore attack vectors that embed malicious payloads within seemingly benign visual content. We also evaluate our model’s resilience to jailbreak techniques — i.e., the design of prompts that cause the model to exhibit prohibited behaviors.

In total, we identified and developed more than 300 distinct red-teaming techniques, which we tested individually and in various combinations. The attacks covered multiple languages and modalities, which were likewise targeted individually and in combination. We measured the model’s performance using transformed prompts that masked the intentions of seed prompts that were originally deflected.

Amazon_Qual_Animation_ALT_120424_TN_V1.gif
We developed more than 300 distinct red-teaming techniques (multicolored bars) that fit into seven basic categories (blue bars).

The cross-modality attacks target complex scenarios involving multiple input types. The image-understanding model, for instance, is capable of both scene description and text comprehension; contradictions between these elements pose potential risks. We emphasize the importance of careful prompt construction and provide additional guardrails to prevent cross-modal interference.

In accordance with our voluntary White House commitment to test the safety and security of our models, we worked with several red-teaming firms to complement our in-house testing in areas such as hate speech, political misinformation, extremism, and other domains. We also worked with a range of companies to develop red-teaming methods that leveraged their specific areas of expertise, such as chemical, biological, radiological, and nuclear risks and model deception capabilities. In addition to devising adversarial attacks like the ones we conduct in house, our external red-teaming experts have helped us design tests for issues that could arise from architectural structure, such as reduced availability.

Automated red teaming

To scale up our human-evaluation efforts, we built an automated red-teaming pipeline, which we adapted from the FLIRT (feedback-loop in-context red-teaming) framework we presented last month at the Conference on Empirical Methods in Natural-Language Processing (EMNLP).

Related content
Attribute-controlled fine-tuning can produce LLMs that adhere to policy while achieving competitive performance on general benchmarks.

The input to our “red-LM” model is a list of seed prompts that have been identified as problematic by human evaluators and grouped by responsible-AI category. For every category, we use in-context learning, prompt engineering, and a subset of seeds to generate additional prompts. We evaluate the responses to those prompts and extract the successful prompts (i.e., the ones triggering an undesired response) to use as seeds for the next round of generation.

We also expanded our pipeline to automatically generate multiturn, multilingual, and multimodal attacks against our systems, to uncover as many vulnerabilities as possible. FLIRT’s attack strategies have been shown to outperform existing methods of automated red teaming in both image-to-text and text-to-text settings.

Watermarking

The Nova models announced yesterday include two multimodal generative-AI models: Amazon Nova Canvas, which generates static images, and Amazon Nova Reel, which generates video. To promote the traceability of AI-generated content, we incorporate invisible watermarks directly into the image and video generation processes and, for Canvas, add metadata developed by the Coalition for Content Provenance and Authenticity (C2PA).

For static images, we developed an invisible-watermark method that is robust to alterations like rotation, resizing, color inversion, flipping, and other efforts to remove the watermark. For videos, we embed our watermark in each frame and ensure that our watermarking and detection methods withstand H.264 compression. We will soon be releasing our watermark detection API via Amazon Bedrock; the new API introduces several enhancements over existing systems, such as replacing binary predictions (watermarked or not) with confidence-score-based predictions, which help identify when the generated content has been edited. The new detection system covers both images and videos.

The road ahead

The rise of foundation models has created an unprecedented challenge and a tremendous opportunity for the field of responsible AI. We have worked hard to ensure that our Amazon Nova models are aligned with our responsible-AI dimensions and deliver an exceptional and delightful customer experience. But we know that there are still many challenging and exciting problems to solve. To address these, we're actively engaging with the academic community through programs like our recent Amazon Research Awards call for proposals, which focuses on key areas such as machine learning in generative AI, governance and responsible AI, distributed training, and machine learning compilers and compiler-based optimizations. By fostering collaboration between industry and academia, we aim to advance responsible-AI practices and drive innovation that mitigates the risks of developing advanced AI while delivering benefits to society as a whole.

Acknowledgments: Chalapathi Choppa, Rahul Gupta, Abhinav Mohanty, Sherif Mostafa

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.