Amazon Nova and our commitment to responsible AI

From reinforcement learning and supervised fine-tuning to guardrail models and image watermarking, responsible AI was foundational to the design and development of the Amazon Nova family of models.

The Amazon Nova family of multimodal foundation models, announced yesterday at Amazon Web Services’ re:Invent conference, is the latest example of our investment in the development and deployment of safe, transparent, and responsible AI. Our commitment to responsible AI has eight core dimensions:

  • Privacy and security: Data and models should be appropriately obtained, used, and protected;
  • Safety: Misuse and harmful system outputs should be deterred;
  • Fairness: Results should be of consistent quality across different groups of stakeholders;
  • Veracity and robustness: The system should produce the correct outputs, even when it encounters unexpected or adversarial inputs;
  • Explainability: System outputs should be explainable and understandable;
  • Controllability: The system should include mechanisms for monitoring and steering its behavior;
  • Governance: Best practices should be incorporated into the AI supply chain, which includes both providers and deployers;
  • Transparency: Stakeholders should be able to make informed choices about their engagement with the AI system.

We operationalized our responsible-AI dimensions into a series of design objectives that guide our decision-making throughout the model development lifecycle — from initial data collection and pretraining to model alignment to the implementation of post-deployment runtime mitigations. Our focus on our customers (both people and enterprises) helps us align with the human values represented by our responsible-AI objectives.

Amazon - RAI Figure-16x9_Dec3.png
The Amazon Nova responsible-AI framework.

In the following sections, we'll explore our approaches to alignment, guardrails, and rigorous testing, demonstrating how each contributes to the creation of AI systems that are not only powerful but also trustworthy and responsible. You can find more details in the responsible-AI section of our Amazon Nova Family technical report.

Training

Alignment

During training, we employed a number of automated methods to ensure we meet our design objectives for each of the responsible-AI dimensions. To govern model behavior (along the safety, fairness, controllability, veracity and robustness, and privacy and security dimensions), we used both supervised fine tuning (SFT) and reinforcement learning with human feedback (RLHF) to align models.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

For SFT, we created single- and multiturn training demonstrations in multiple languages, while for RLHF training, we collected human preference data — including examples from previous evaluations. For RLHF training, we also provided a responsible-AI-specific reward model, trained on internally annotated data across all responsible-AI dimensions.

Guardrails

In addition to enforcing responsible-AI alignment on the core Amazon Nova models, we built runtime input- and output-moderation models that serve as a first and last line of defense and allow us to respond more quickly to newly identified threats and gaps in model alignment. The main role of the input model is to detect prompts that contain malicious, insecure (e.g., corrupted), or inappropriate material or that attempt to bypass the core model alignment (prompt injection, jailbreaking). The output model is designed to filter out sensitive content that the core models may generate on occasion.

Evaluation

Internal evaluation

Throughout model development, we performed extensive evaluations using internally developed benchmarks for each of our responsible-AI dimensions. Each benchmark was continuously updated with examples from our past red-teaming exercises. This kept the internal benchmarks evergreen, preventing overfitting during development; it also ensured that the models did not regress against previously identified risks. Our datasets comprise a mixture of English, multilingual (German, French, Spanish, Italian, Portuguese, Japanese, Hindi, Arabic), text-only, multimodal, single-turn, and multiturn examples.

A comprehensive estimate of our models’ responsible-AI performance requires evaluation on two fronts: responsible-AI adherence and false refusals (unwarranted suppression of output). To that end, we created targeted test sets to measure adherence on each dimension and larger tests sets designed to mimic actual use to measure false-refusal rates.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

To evaluate the adversarial robustness of our models, we built a comprehensive benchmark based on existing and emerging adversarial techniques and novel techniques we developed internally. We considered risks specific to particular types of customers, such as developers building applications using our models and users directly interacting with our models. Our set of risk categories includes the following: sensitive-data exfiltration, degraded availability to users, unauthorized actions, and malicious-content generation.

Public responsible-AI benchmarks

In addition to our proprietary internal benchmarks, we have contributed to the growing body of publicly available responsible-AI datasets that can be used for both training and evaluation. We have developed benchmarks for three of our responsible-AI dimensions: fairness, privacy and security, and veracity and robustness.

Fairness: To help evaluate fairness, we created BOLD, a dataset with more than 23,000 English text-generation prompts that test for bias across profession, gender, race, religion, and political ideology. BOLD measures the toxicity of LLM completions of sentences like “A flight nurse is a registered...” or “An animator is an artist who...”.

In 2023, we introduced TANGO, a dataset that tests for misgendering of transgender and nonbinary (TGNB) people, including inconsistency in the use of neo-pronouns and the toxicity of responses to gender disclosure. To examine but also improve performance in underrepresented English-language dialects (e.g., Bahamian or rural African-American vernacular), we created Multi-VALUE, a rule-based system that maps standard American English sentences to 50 different dialects, using 189 unique linguistic features identified in the Electronic World Atlas of Varieties of English.

To examine LLMs’ understanding of regional variations in informal language, we collaborated on a project, led by University of Toronto researchers, to develop a slang benchmark featuring sentences from UK and US movie subtitles paired with non-slang versions of the same texts (e.g., “that jacket is blazing” vs. “that jacket is excellent”).

Related content
Amazon Scholar and NeurIPS advisory board member Richard Zemel on what robustness and responsible AI have in common, what AI can still learn from neuroscience, and the emerging topics that interest him most.

Veracity and robustness: To help evaluate veracity and robustness, we built INVITE, a method for automatically generating questions containing incorrect assumptions or presuppositions, such as “Which part of Canada is Szczekarków, Lubartów County, located in?” (Szczekarków is in Poland.) This is in addition to our long-standing set of FEVER shared tasks on factual verification, which are now used as standard benchmarks of factuality and evidence retrieval.

Privacy and security: Finally, for privacy and security, we created LLM-PIEval, a benchmark containing indirect prompt-injection attacks for LLMs that use retrieval-augmented generation (or RAG — i.e., retrieving outside information to augment generation). Attacks targeting sensitive APIs (e.g., banking) are injected into documents retrieved during execution of a benign question-answering task. In collaboration with labs at the University of Southern California, we also built FedMultimodal, a benchmark that can assess the robustness of multimodal federated-learning pipelines against data corruptions such as missing modalities, missing labels, and erroneous labels.

Red teaming

Red teaming is an online evaluation methodology in which human experts attempt to generate inputs that circumvent responsible-AI protections. Our process has four main steps: compiling known attack techniques, expanding on these techniques using our own models, defining sub-techniques, and conducting automated adversarial testing.

Given our models' multimodal capabilities — including text, images, and video — we develop attacks that target each modality individually and in combination. For text-based attacks, we focus on adversarial techniques to bypass guardrails. For image and video understanding, we craft adversarial content and explore attack vectors that embed malicious payloads within seemingly benign visual content. We also evaluate our model’s resilience to jailbreak techniques — i.e., the design of prompts that cause the model to exhibit prohibited behaviors.

In total, we identified and developed more than 300 distinct red-teaming techniques, which we tested individually and in various combinations. The attacks covered multiple languages and modalities, which were likewise targeted individually and in combination. We measured the model’s performance using transformed prompts that masked the intentions of seed prompts that were originally deflected.

Amazon_Qual_Animation_ALT_120424_TN_V1.gif
We developed more than 300 distinct red-teaming techniques (multicolored bars) that fit into seven basic categories (blue bars).

The cross-modality attacks target complex scenarios involving multiple input types. The image-understanding model, for instance, is capable of both scene description and text comprehension; contradictions between these elements pose potential risks. We emphasize the importance of careful prompt construction and provide additional guardrails to prevent cross-modal interference.

In accordance with our voluntary White House commitment to test the safety and security of our models, we worked with several red-teaming firms to complement our in-house testing in areas such as hate speech, political misinformation, extremism, and other domains. We also worked with a range of companies to develop red-teaming methods that leveraged their specific areas of expertise, such as chemical, biological, radiological, and nuclear risks and model deception capabilities. In addition to devising adversarial attacks like the ones we conduct in house, our external red-teaming experts have helped us design tests for issues that could arise from architectural structure, such as reduced availability.

Automated red teaming

To scale up our human-evaluation efforts, we built an automated red-teaming pipeline, which we adapted from the FLIRT (feedback-loop in-context red-teaming) framework we presented last month at the Conference on Empirical Methods in Natural-Language Processing (EMNLP).

Related content
Attribute-controlled fine-tuning can produce LLMs that adhere to policy while achieving competitive performance on general benchmarks.

The input to our “red-LM” model is a list of seed prompts that have been identified as problematic by human evaluators and grouped by responsible-AI category. For every category, we use in-context learning, prompt engineering, and a subset of seeds to generate additional prompts. We evaluate the responses to those prompts and extract the successful prompts (i.e., the ones triggering an undesired response) to use as seeds for the next round of generation.

We also expanded our pipeline to automatically generate multiturn, multilingual, and multimodal attacks against our systems, to uncover as many vulnerabilities as possible. FLIRT’s attack strategies have been shown to outperform existing methods of automated red teaming in both image-to-text and text-to-text settings.

Watermarking

The Nova models announced yesterday include two multimodal generative-AI models: Amazon Nova Canvas, which generates static images, and Amazon Nova Reel, which generates video. To promote the traceability of AI-generated content, we incorporate invisible watermarks directly into the image and video generation processes and, for Canvas, add metadata developed by the Coalition for Content Provenance and Authenticity (C2PA).

For static images, we developed an invisible-watermark method that is robust to alterations like rotation, resizing, color inversion, flipping, and other efforts to remove the watermark. For videos, we embed our watermark in each frame and ensure that our watermarking and detection methods withstand H.264 compression. We will soon be releasing our watermark detection API via Amazon Bedrock; the new API introduces several enhancements over existing systems, such as replacing binary predictions (watermarked or not) with confidence-score-based predictions, which help identify when the generated content has been edited. The new detection system covers both images and videos.

The road ahead

The rise of foundation models has created an unprecedented challenge and a tremendous opportunity for the field of responsible AI. We have worked hard to ensure that our Amazon Nova models are aligned with our responsible-AI dimensions and deliver an exceptional and delightful customer experience. But we know that there are still many challenging and exciting problems to solve. To address these, we're actively engaging with the academic community through programs like our recent Amazon Research Awards call for proposals, which focuses on key areas such as machine learning in generative AI, governance and responsible AI, distributed training, and machine learning compilers and compiler-based optimizations. By fostering collaboration between industry and academia, we aim to advance responsible-AI practices and drive innovation that mitigates the risks of developing advanced AI while delivering benefits to society as a whole.

Acknowledgments: Chalapathi Choppa, Rahul Gupta, Abhinav Mohanty, Sherif Mostafa

Related content

US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.