Amazon Scholar John Preskill on the AWS quantum computing effort

The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

In June, Amazon Web Services (AWS) announced that John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology, an advisor to the National Quantum Initiative, and one of the most respected researchers in the field of quantum information science, would be joining Amazon’s quantum computing research effort as an Amazon Scholar.

Quantum computing is an emerging technology with the potential to deliver large speedups — even exponential speedups — over classical computing on some computational problems.

John Preskill
John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar
Credit: Caltech / Lance Hayashida

Where a bit in an ordinary computer can take on the values 0 or 1, a quantum bit, or qubit, can take on the values 0, 1, or, in a state known as superposition, a combination of the two. Quantum computing depends on preserving both superposition and entanglement, a fragile condition in which the qubits’ quantum states are dependent on each other.

The goal of the AWS Center for Quantum Computing, on the Caltech campus, is to develop and build quantum computing technologies and deliver them onto the AWS cloud. At the center, Preskill will be joining his Caltech colleagues Oskar Painter and Fernando Brandao, the heads of AWS’s Quantum Hardware and Quantum Algorithms programs, respectively, and Gil Refael, the Taylor W. Lawrence Professor of Theoretical Physics at Caltech and, like Preskill, an Amazon Scholar.

Other Amazon Scholars contributing to the AWS quantum computing effort are Amir Safavi-Naeini, an assistant professor of applied physics at Stanford University, and Liang Jiang, a professor of molecular engineering at the University of Chicago.

Amazon Science asked Preskill three questions about the challenges of quantum computing and why he’s excited about AWS’s approach to meeting them.

Q: Why is quantum computing so hard?

What makes it so hard is we want our hardware to simultaneously satisfy a set of criteria that are nearly incompatible.

On the one hand, we need to keep the qubits almost perfectly isolated from the outside world. But not really, because we want to control the computation. Eventually, we’ve got to measure the qubits, and we've got to be able to tell them what to do. We're going have to have some control circuitry that determines what actual algorithm we’re running.

So why is it so important to keep them isolated from the outside world? It's because a very fundamental difference between quantum information and ordinary information expressed in bits is that you can't observe a quantum state without disturbing it. This is a manifestation of the uncertainty principle of quantum mechanics. Whenever you acquire information about a quantum state, there's some unavoidable, uncontrollable disturbance of the state.

So in the computation, we don't want to look at the state until the very end, when we're going to read it out. But even if we're not looking at it ourselves, the environment is looking at it. If the environment is interacting with the quantum system that encodes the information that we're processing, then there's some leakage of information to the outside, and that means some disturbance of the quantum state that we're trying to process.

Explore our new quantum technologies research section

Quantum computing has the potential to solve computational problems that are beyond the reach of today's classical computers. Find the latest quantum news, research papers, and more.

So really, we need to keep the quantum computer almost perfectly isolated from the outside world, or else it's going to fail. It's going to have errors. And that sounds ridiculously hard, because hardware is never going to be perfect. And that's where the idea of quantum error correction comes to the rescue.

The essence of the idea is that if you want to protect the quantum information, you have to store it in a very nonlocal way by means of what we call entanglement. Which is, of course, the origin of the quantum computer’s magic to begin with. A highly entangled state has the property that when you have the state shared among many parts of a system, you can look at the parts one at a time, and that doesn't reveal any of the information that is carried by the system, because it's really stored in these unusual nonlocal quantum correlations among the parts. And the environment interacts with the parts kind of locally, one at a time.

If we store the information in the form of this highly entangled state, the environment doesn't find out what the state is. And that's why we're able to protect it. And we've also figured out how to process information that's encoded in this very entangled, nonlocal way. That's how the idea of quantum error correction works. What makes it expensive is in order to get very good protection, we have to have the information shared among many qubits.

Q: Today’s error correction schemes can call for sharing the information of just one logical qubit — the one qubit actually involved in the quantum computation — across thousands of additional qubits. That sounds incredibly daunting, if your goal is to perform computations that involve dozens of logical qubits.

Well, that's why, as much as we can, we would like to incorporate the error resistance into the hardware itself rather than the software. The way we usually think about quantum error correction is we’ve got these noisy qubits — it's not to disparage them or anything: they're the best qubits we've got in a particular platform. But they're not really good enough for scaling up to solving really hard problems. So the solution which at least theoretically we know should work is that we use a code. That is, the information that we want to protect is encoded in the collective state of many qubits instead of just the individual qubits.

We're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

But the alternative approach is to try to use error correction ideas in the design of the hardware itself. Can we use an encoding that has some kind of intrinsic noise resistance at the physical level?

The original idea for doing this came from one of my Caltech colleagues, Alexei Kitaev, and his idea was that you could just design a material that sort of has its own strong quantum entanglement. Now people call these topological materials; what's important about them is they're highly entangled. And so the information is spread out in this very nonlocal way, which makes it hard to read the information locally.

Making a topological material is something people are trying to do. I think the idea is still brilliant, and maybe in the end it will be a game-changing idea. But so far it's just been too hard to make the materials that have the right properties.

A better bet for now might be to do something in-between. We want to have some protection at the hardware level, but not go as far as these topological materials. But if we can just make the error rate of the physical qubits lower, then we won't need so much overhead from the software protection on top.

Q: For a theorist like you, what’s the appeal of working on a project whose goal is to develop new technologies?

My training was in particle physics and cosmology, but in the mid-nineties, I got really excited because I heard about the possibility that if you could build a quantum computer, you could factor large numbers. As physicists, of course, we're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

The situation is we don't know much about what happens when a quantum system is very profoundly entangled, and the reason we don't know is because we can't simulate it on our computers. Our classical computers just can't do it. And that means that as theorists, we don't really have the tools to explain how those systems behave.

I have done a lot of work on these quantum error correcting codes. It was one of my main focuses for almost 15 years. There were a lot of issues of principle that I thought were important to address. Things like, What do you really need to know about noise for these things to work? This is still an important question, because we had to make some assumptions about the noise and the hardware to make progress.

I said the environment looks at the system locally, sort of one part at a time. That's actually an assumption. It's up to the environment to figure out how it wants to look at it. As physicists, we tend to think physics is kind of local, and things interact with other nearby things. But until we’re actually doing it in the lab, we won't really be sure how good that assumption is.

So this is the new frontier of the physical sciences, exploring these more and more complex systems of many particles interacting quantum mechanically, becoming highly entangled. Sometimes I call it the entanglement frontier. And I'm excited about what we can learn about physics by exploring that. I really think in AWS we are looking ahead to the big challenges. I'm pretty jazzed about this.

#403: Amazon Scholars

On November 2, 2020, John Preskill joined Simone Severini, the director of AWS Quantum Computing, for an interview with Simon Elisha, host of the Official AWS Podcast.

Research areas

Related content

CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 8am-5pm. Specific team norms around working hours will be communicated by your manager. Interns should not have conflicts such as classes or other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role. About the team The Personal Robotics Group is pioneering intelligent robotic products that deliver meaningful customer experiences. We're the team behind Amazon Astro, and we're building the next generation of robotic systems that will redefine how customers interact with technology. Our work spans the full spectrum from advanced hardware design to sophisticated software and control systems, combining mechanical innovation, software engineering, dynamic systems modeling, and intelligent algorithms to create robots that are not just functional, but delightful. This is a unique opportunity to shape the future of personal robotics working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Join us if you're passionate about creating the future of personal robotics, solving complex challenges at the intersection of hardware and software, and seeing your innovations deliver transformative customer experiences.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Science Manager with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to lead a team ensuring the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Science Manager will lead and mentor a team of Applied Scientists who develop comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. The manager will guide the team in designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that align with core scientist team developing Amazon Nova models. The Applied Science Manager will oversee expert-level manual audits, meta-audits to evaluate auditor performance, and provide coaching to uplift overall quality capabilities across the team. A critical aspect of this role involves managing the development and maintenance of LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Science Manager will also oversee the configuration of data collection workflows and ensure effective communication of quality feedback to stakeholders. The manager will have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. The Applied Science Manager will be responsible for recruiting, hiring, and developing team members, conducting performance reviews, setting clear expectations and growth plans, and fostering a culture of scientific excellence and innovation. The manager will communicate with senior leadership, cross-functional technical teams, and customers to collect requirements, describe product features and technical designs, and articulate product strategy. A day in the life An Applied Science Manager with the AGI team will lead quality solution design, guide root cause analysis on data quality issues, drive research into new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. The manager will work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice. The manager will also conduct regular 1:1s with team members, provide mentorship and coaching, and ensure the team delivers high-impact results aligned with organizational goals.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.