Amazon Scholar John Preskill on the AWS quantum computing effort

The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

In June, Amazon Web Services (AWS) announced that John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology, an advisor to the National Quantum Initiative, and one of the most respected researchers in the field of quantum information science, would be joining Amazon’s quantum computing research effort as an Amazon Scholar.

Quantum computing is an emerging technology with the potential to deliver large speedups — even exponential speedups — over classical computing on some computational problems.

John Preskill
John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar
Credit: Caltech / Lance Hayashida

Where a bit in an ordinary computer can take on the values 0 or 1, a quantum bit, or qubit, can take on the values 0, 1, or, in a state known as superposition, a combination of the two. Quantum computing depends on preserving both superposition and entanglement, a fragile condition in which the qubits’ quantum states are dependent on each other.

The goal of the AWS Center for Quantum Computing, on the Caltech campus, is to develop and build quantum computing technologies and deliver them onto the AWS cloud. At the center, Preskill will be joining his Caltech colleagues Oskar Painter and Fernando Brandao, the heads of AWS’s Quantum Hardware and Quantum Algorithms programs, respectively, and Gil Refael, the Taylor W. Lawrence Professor of Theoretical Physics at Caltech and, like Preskill, an Amazon Scholar.

Other Amazon Scholars contributing to the AWS quantum computing effort are Amir Safavi-Naeini, an assistant professor of applied physics at Stanford University, and Liang Jiang, a professor of molecular engineering at the University of Chicago.

Amazon Science asked Preskill three questions about the challenges of quantum computing and why he’s excited about AWS’s approach to meeting them.

Q: Why is quantum computing so hard?

What makes it so hard is we want our hardware to simultaneously satisfy a set of criteria that are nearly incompatible.

On the one hand, we need to keep the qubits almost perfectly isolated from the outside world. But not really, because we want to control the computation. Eventually, we’ve got to measure the qubits, and we've got to be able to tell them what to do. We're going have to have some control circuitry that determines what actual algorithm we’re running.

So why is it so important to keep them isolated from the outside world? It's because a very fundamental difference between quantum information and ordinary information expressed in bits is that you can't observe a quantum state without disturbing it. This is a manifestation of the uncertainty principle of quantum mechanics. Whenever you acquire information about a quantum state, there's some unavoidable, uncontrollable disturbance of the state.

So in the computation, we don't want to look at the state until the very end, when we're going to read it out. But even if we're not looking at it ourselves, the environment is looking at it. If the environment is interacting with the quantum system that encodes the information that we're processing, then there's some leakage of information to the outside, and that means some disturbance of the quantum state that we're trying to process.

Explore our new quantum technologies research section

Quantum computing has the potential to solve computational problems that are beyond the reach of today's classical computers. Find the latest quantum news, research papers, and more.

So really, we need to keep the quantum computer almost perfectly isolated from the outside world, or else it's going to fail. It's going to have errors. And that sounds ridiculously hard, because hardware is never going to be perfect. And that's where the idea of quantum error correction comes to the rescue.

The essence of the idea is that if you want to protect the quantum information, you have to store it in a very nonlocal way by means of what we call entanglement. Which is, of course, the origin of the quantum computer’s magic to begin with. A highly entangled state has the property that when you have the state shared among many parts of a system, you can look at the parts one at a time, and that doesn't reveal any of the information that is carried by the system, because it's really stored in these unusual nonlocal quantum correlations among the parts. And the environment interacts with the parts kind of locally, one at a time.

If we store the information in the form of this highly entangled state, the environment doesn't find out what the state is. And that's why we're able to protect it. And we've also figured out how to process information that's encoded in this very entangled, nonlocal way. That's how the idea of quantum error correction works. What makes it expensive is in order to get very good protection, we have to have the information shared among many qubits.

Q: Today’s error correction schemes can call for sharing the information of just one logical qubit — the one qubit actually involved in the quantum computation — across thousands of additional qubits. That sounds incredibly daunting, if your goal is to perform computations that involve dozens of logical qubits.

Well, that's why, as much as we can, we would like to incorporate the error resistance into the hardware itself rather than the software. The way we usually think about quantum error correction is we’ve got these noisy qubits — it's not to disparage them or anything: they're the best qubits we've got in a particular platform. But they're not really good enough for scaling up to solving really hard problems. So the solution which at least theoretically we know should work is that we use a code. That is, the information that we want to protect is encoded in the collective state of many qubits instead of just the individual qubits.

We're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

But the alternative approach is to try to use error correction ideas in the design of the hardware itself. Can we use an encoding that has some kind of intrinsic noise resistance at the physical level?

The original idea for doing this came from one of my Caltech colleagues, Alexei Kitaev, and his idea was that you could just design a material that sort of has its own strong quantum entanglement. Now people call these topological materials; what's important about them is they're highly entangled. And so the information is spread out in this very nonlocal way, which makes it hard to read the information locally.

Making a topological material is something people are trying to do. I think the idea is still brilliant, and maybe in the end it will be a game-changing idea. But so far it's just been too hard to make the materials that have the right properties.

A better bet for now might be to do something in-between. We want to have some protection at the hardware level, but not go as far as these topological materials. But if we can just make the error rate of the physical qubits lower, then we won't need so much overhead from the software protection on top.

Q: For a theorist like you, what’s the appeal of working on a project whose goal is to develop new technologies?

My training was in particle physics and cosmology, but in the mid-nineties, I got really excited because I heard about the possibility that if you could build a quantum computer, you could factor large numbers. As physicists, of course, we're interested in what is fundamentally different between classical systems and quantum systems. And I don't know a statement that more dramatically expresses the difference than saying that there are problems that are easy quantumly and hard classically.

The situation is we don't know much about what happens when a quantum system is very profoundly entangled, and the reason we don't know is because we can't simulate it on our computers. Our classical computers just can't do it. And that means that as theorists, we don't really have the tools to explain how those systems behave.

I have done a lot of work on these quantum error correcting codes. It was one of my main focuses for almost 15 years. There were a lot of issues of principle that I thought were important to address. Things like, What do you really need to know about noise for these things to work? This is still an important question, because we had to make some assumptions about the noise and the hardware to make progress.

I said the environment looks at the system locally, sort of one part at a time. That's actually an assumption. It's up to the environment to figure out how it wants to look at it. As physicists, we tend to think physics is kind of local, and things interact with other nearby things. But until we’re actually doing it in the lab, we won't really be sure how good that assumption is.

So this is the new frontier of the physical sciences, exploring these more and more complex systems of many particles interacting quantum mechanically, becoming highly entangled. Sometimes I call it the entanglement frontier. And I'm excited about what we can learn about physics by exploring that. I really think in AWS we are looking ahead to the big challenges. I'm pretty jazzed about this.

#403: Amazon Scholars

On November 2, 2020, John Preskill joined Simone Severini, the director of AWS Quantum Computing, for an interview with Simon Elisha, host of the Official AWS Podcast.

Research areas

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
GB, Cambridge
The Artificial General Intelligence team (AGI) has an exciting position for an Applied Scientist with a strong background NLP and Large Language Models to help us develop state-of-the-art conversational systems. As part of this team, you will collaborate with talented scientists and software engineers to enable conversational assistants capabilities to support the use of external tools and sources of information, and develop novel reasoning capabilities to revolutionise the user experience for millions of Alexa customers. Key job responsibilities As an Applied Scientist, you will develop innovative solutions to complex problems to extend the functionalities of conversational assistants . You will use your technical expertise to research and implement novel algorithms and modelling solutions in collaboration with other scientists and engineers. You will analyse customer behaviours and define metrics to enable the identification of actionable insights and measure improvements in customer experience. You will communicate results and insights to both technical and non-technical audiences through written reports, presentations and external publications.
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Artificial General Intelligence (AGI) organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services.
IL, Tel Aviv
Are you an inventive, curious, and driven Applied Scientist with a strong background in AI and Deep Learning? Join Amazon’s AWS Multimodal generative AI science team and be a catalyst for groundbreaking advancements in Computer Vision, Generative AI, and foundational models. As part of the AWS Multimodal generative AI science team, you’ll lead innovative research projects, develop state-of-the-art algorithms, and pioneer solutions that will directly impact millions of Amazon customers. Leveraging Amazon’s vast computing power, you’ll work alongside a supportive and diverse group of top-tier scientists and engineers, contributing to products that redefine the industry. Key job responsibilities * Lead research initiatives in Multimodal generative AI, pushing the boundaries of model efficiency, accuracy, and scalability. * Design, implement, and evaluate deep learning models in a production environment. * Collaborate with cross-functional teams to transfer research outcomes into scalable AWS services. * Publish in top-tier conferences and journals, keeping Amazon at the forefront of innovation. * Mentor and guide other scientists and engineers, fostering a culture of scientific curiosity and excellence.
US, WA, Seattle
We are seeking a highly skilled economist to measure and understand how each Customer Service activity impacts customers. This candidate's analysis will assist teams across Amazon to prioritize defect elimination efforts and optimize how we respond to customer contacts. This candidate will partner closely with our product, program, and tech teams to deliver their findings to users via systems and dashboards that guide Customer Service planning and policy rules. Key job responsibilities - Develop Causal, Economic, and Machine Learning models at scale. - Engage in economic analysis and raise the bar for research. - Inform strategic discussions with senior leaders across the company to guide policies. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Worldwide defect elimination team's mission is to understand and resolve all issues impacting customers at scale. The Customer Service Economics and Optimization team is a force multiplier within this group, helping to understand the impact of these issues and our actions to optimize the customer experience.
NL, Amsterdam
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. The AB Sales Analytics, Data, Product and Tech (ADAPTech) team uses CRM, data, product, and science to improve Sales productivity and performance. It has four pillars: 1) SalesTech maintains Salesforce to enable Sales workflows, and supports >2K users in nine countries; 2) Product and Science builds tools embedded with bespoke Machine Learning (ML) and GenAI large language models to enable sales reps to prioritize top accounts, position the right Amazon Business (AB) product features, and take actions based on critical customer events; 3) Sales Data Management (SDM) and Sales Account Management (SAM) enrich customer profiles and business hierarchies while improving productivity through automation and integration of internal/external tools; and 4) Business Intelligence (BI) enables self-service reporting simplifying access to key insights through WBRs and dashboards. Sales teams leverage these products to identify which customers to target, what features to target them with, and when to target them, in order to capture their share of wallet. A successful Applied Scientist at Amazon demonstrates bias for action and operates in a startup environment, with outstanding leadership skills, and proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. We need great leaders to think big and design new solutions to solve complex problems using machine learning (ML) and Generative AI techniques to improve our customers’ experience when using AB. You have hands-on experience making the right decisions about technology, models and methodology choices. Key job responsibilities As an Applied Scientist, you will primarily leverage machine learning techniques and generative AI to outreach customers based on their life cycle stage, behavioral patterns, and purchase history. You may also perform text mining and insight analysis of real-time customer conversations and make the model learn and recommend the solutions. Your work will directly impact the trust customers place in Amazon Business. You will partner with product management and technical leadership to identify opportunities to innovate customer journey experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but also play a crucial role in shaping strategies. Additional responsibilities include: -Design, implement, test, deploy and maintain innovative data and machine learning solutions to further the customer experience. -Create experiments and prototype implementations of new learning algorithms and prediction techniques -Develop algorithms for new capabilities and trace decisions in the data and assess how proposed changes could potentially impact business metrics to cater needs of Amazon Business Sales -Build models that measure incremental value, predict growth, define and conduct experiments to optimize engagement of AB customers, and communicate insights and recommendations to product, sales, and finance partners. A day in the life In this role, you will be a technical expert with significant scope and impact. You will work with Technical Product Managers, Data Engineers, other Scientists, and Salesforce developers, to build new and enhance existing ML models to optimize customer experience. You will prototype and test new ideas, iterate quickly, and deploy models to production. Also, you will conduct in-depth data analysis and feature engineering to build robust ML models.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in machine learning, artificial intelligence and related fields. Amazon scientists employ the company's working backwards method to identify problems to solve on behalf of customers in research areas ranging from machine learning to operations, GenAI, robotics, quantum computing, computer vision, economics, search, sustainability and more. Learn more about Amazon Science here: https://www.amazon.science/ We are hiring across multiple businesses and in many locations across the US. Apply here to learn more about open roles that could be a compelling fit for your background. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Bellevue
Amazon Web Services (AWS) offers a broad set of global compute, storage, database, analytics, application, and deployment services that help organizations move faster, lower IT costs, and scale applications. These services are trusted by the largest enterprises and the hottest start-ups to power a wide variety of workloads including web and mobile applications, data processing and warehousing, storage, archive, and many others. We are looking for an applied scientist to help us define and build a new enterprise application. AWS Applications is building services in Supply Chain Management and is looking for a scientist to tackle complex science problems in Supply Chain including demand planning, supply planning and sustainability which will be used by our customers across a wide range of industries. We operate a fast growing business and our journey has only started. Our mission is to build the most efficient and optimal supply chain software on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in optimization, operations research, and machine learning to grow our businesses. As an Applied Scientist, you’ll design, model, develop and implement state-of-the-art models and solutions used by users worldwide. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy models to improve state-of-the-art for time series. You will have the opportunity to work on our assistant solution allowing our users to ask data questions in natural language and get intelligent insights and exceptions. Key job responsibilities Lead and partner with the engineering to drive modeling and technical design for complex business problems. Develop accurate and scalable machine learning models to solve our hardest supply chain problems. Lead complex modeling analyses to aid management in making key business decisions and set product direction. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.