Amazon Scholar solves century-old problem with automated reasoning

Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

Marijn Heule, an Amazon Scholar and professor of computer science at Carnegie Mellon University, together with his colleague Manfred Scheucher of Technische Universität Berlin, have solved a geometry problem posed almost 100 years ago by the Hungarian-Australian mathematician Esther Szekeres.

Marijn.jpg
Marijn Heule, an Amazon Scholar and professor of computer science at Carnegie Mellon University.

Paul Erdős, the legendary Hungarian mathematician who gave his name to the Erdős number, dubbed it the “happy-ending problem”, because work on it led to the marriage of Esther, née Klein, and Erdős’s long-time collaborator George Szekeres.

The problem asks the minimum number of points in a plane, no three of which are collinear, required to guarantee that n of the points constitute a convex polygon that does not contain any of the other points. (“Convex” means that a line segment connecting any two points within the polygon itself lies entirely within the polygon.)

Esther Szekeres dispatched the case of n = 4 in the 1930s. It was almost 50 years before Heiko Harborth determined that 10 points are needed to guarantee an empty pentagon. Around the same time, Joseph Horton showed that the problem is insoluble for polygons with seven or more sides: no number of points will guarantee that a convex 7-gon can be found that contains no other points in the collection.

But the remaining case — the empty hexagon — was still outstanding. That’s the problem that Heule and Scheucher solved. They showed that 30 points is sufficient to guarantee a convex hexagon that doesn’t contain any of the other points.

To prove this result, Heule and Scheucher used a SAT solver, an automated-reasoning tool that determines whether long chains of logical constraints can be satisfied. The SAT solver generates a proof that particular assignments of values to variables are prohibited by the constraints. Verifying the correctness of the proof requires another automated-reasoning tool, a proof checker.

Related content
To mark the occasion of the eighth Federated Logic Conference (FloC), Amazon’s Byron Cook, Daniel Kröning, and Marijn Heule discussed automated reasoning’s prospects.

Proofs, however, can be hundreds of terabytes in size, and just managing input-output (I/O) and data retrieval during the proof-checking process can be hugely time consuming. “The cost of checking can be, say, 100% to 200% of the original solving time,” Heule says.

Heule, who is a member of Amazon Web Services’ (AWS’s) Automated Reasoning group, worked with his AWS colleagues to develop the infrastructure for a new streaming approach to proof checking, where a dedicated server core checks the proof as it is generated. This reduces the proof-checking overhead from 100% to 200% to somewhere around 10%.

This innovation, in turn, will be of use to the Automated Reasoning group in its future work on, say, software security, provably correct software, and hardware validation. Of course, those applications still require developers to create rigorous formal models of the systems they’re validating. But during the proof-checking phase, “if we can do things with say 10% overhead instead of 150%, that's a clear win,” Heule says.

Geometric constraints

SAT problems are NP-complete, meaning that SAT problems can be devised that would be insoluble by all the computers in the world in the lifetime of the universe.

But that doesn’t mean that all SAT problems, or even SAT problems with large numbers of variables, are insoluble, and part of the automated-reasoning researcher’s art is formulating problems in such a way that a SAT solver can solve them.

“Marijn is best-in-the-world at mapping complex problems to solvers,” says Robert Jones, a senior principal applied scientist in the AWS Automated Reasoning group.

Related content
CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

The setup of the happy-ending problem can be described using binary (Boolean) variables each of which describes the orientations of three points. The variables all have the same general form: given three points in general position (i.e., not collinear), A, B, and C, C is above the line through A and B. (If the variable is false, C is necessarily below the line.) Chain enough of these together, and you can specify the 30 points of the 6-gon case (or 29 points, or any other number).

Within that framework, the difficulty is to describe the condition that there be at least one hexagon with no point inside it. Scheucher’s group had been batting that problem about for years without arriving at a formulation that a SAT solver could handle. That’s where Heule came in.

People mapping problems to SAT expressions often focus on concision, Heule explains; the more concise the expression, they reason, the fewer possibilities the solver will need to consider. That may be true in general, Heule says, but in his experience, long chains of simple constraints are often easier to reason about than short chains of more complex constraints.

Simplifying the problem

The natural way to approach the empty-hexagon problem is to break hexagons into triangles and reason about whether each triangle has a point in its interior. Prior attempts to map this problem to a SAT expression had taken a general approach, specifying a set of logical constraints that could be applied to any triangle in the collection and all hexagons that included that triangle. The resulting expression, Heule says, was easy to formulate but hard to reason about.

Heule suggested that he and Scheucher take the opposite tack, explicitly labeling every possible configuration of each hexagon, specifying the individual triangles using those labels, and checking each of the named triangles for points in its interior.

Three hexagons, with vertices labeled with the letters a through f. Each hexagon is divided into four triangles — one "inner" triangle, which shares all of its sides with other triangles, and three "outer" triangles. In all three triangles, the line segment af is the longest line segment connecting any two vertices. In the first hexagon, no vertices are below the line segment af; in the second triangle, one vertex is; and in the third triangle, two vertices are.
These three hexagons differ in the number of points that lie below the line segment af. Any other arrangement of points can be mapped to one of these structures. In all three hexagons, establishing that the central (pink) triangle is empty is sufficient to conclude that the point set contains an empty hexagon.

“In this case, you really need to blow it up in order to get much smaller later,” Heule explains. “I made it 10 times bigger and afterward realized that the new expression could be compressed substantially. This compression step is also possible with existing automated-reasoning tools.”

Related content
Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

One of the ways that SAT solvers reduce the complexity of the problems they’re tackling is by looking for logical redundancies and removing them. In his initial specification of the empty-hexagon problem, Heule divided each hexagon in the point set into four triangles and checked each triangle for a point in its interior.

He noticed, however, that the SAT solver reduced this step to checking only one triangle per hexagon. After thinking it through, Heule and Scheucher realized that in each hexagon, there was a single triangle — call it the inner triangle — that shared all its sides with the hexagon’s other three triangles — call them the outer triangles. If that inner triangle was empty, then it was possible to deduce the existence of an empty hexagon from the points in the point set.

Suppose that one of the outer triangles contains a point. Then it’s possible to draw a new triangle that contains that point and shares a side with the inner triangle. Repeating this process as needed is guaranteed to yield a convex hexagon with no points in its interior.

An animation that begins with a blue hexagon divided into four triangles, one "inner triangle" that shares all its sides with other triangles and three "outer triangles". Two of the outer triangles enclose dots. First, the inner triangle turns orange. Then, two dotted lines connect each dot with the two corners of the corresponding outer triangle that are shared by the inner triangle. The dotted lines solidify, creating a new hexagon, and the sides of the old hexagon dissolve. The new hexagon turns orange.
In a hexagon constructed from points in a prespecified set, if any of the "outer triangles" enclose points in the set, it's possible to draw a new hexagon — still constructed from the same set — that does not enclose them.

Heule and Scheucher extracted this line of reasoning from the SAT solver itself. “I have frequently seen that the solver provides useful feedback, although it's feedback for an expert,” Heule says. “I think it's really important that this feedback becomes available for nonexperts. For example, you implement something, and the solver says, ‘Okay, you're trying to do this, but that part of the expression is not needed.’ This feedback can be used to reformulate the expression in such a way that that it is much easier to solve.”

Related content
Method enables machine-checkable proofs of SAT solvers’ decisions on incremental SAT problems, in which problem constraints are gradually imposed over time.

Once Heule and Scheucher understood what the solver was telling them, they were able to devise a more practical specification of the SAT problem. The solver was able to reason through all the possibilities for a 30-point point set and prove that, within that set, there must exist at least one hexagon whose inner triangle contained no other points.

It was still an extremely long proof, but Heule and his AWS colleagues’ new proof-checking mechanism was able to confirm its validity relatively quickly.

“One of the issues here is that many users of these tools don't know how to get the most out of them,” Heule says. “And that's not only for this specific problem but for many other problems as well. Within Amazon, there are a lot of applications where SAT solvers could verify developers’ work or find better solutions. I can help by writing an effective encoding, but ideally, everything would be done automatically. I would love to see myself being taken out of the equation.”

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, NY, New York
Join us in a historic endeavor to make Generative AI accessible to the world with breakthrough research! The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists drives the innovation that enables external and internal SageMaker customers to train their next generation models on both GPU and Trainium instances. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.