“Ambient intelligence" will accelerate advances in general AI

Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

As the world has become more connected, and computing has permeated our surroundings, a new AI paradigm is emerging: ambient intelligence. In this paradigm, our environment responds to our requests and anticipates our needs, provides information or suggests actions, and then recedes into the background.

Rohit Prasad.jpg
Rohit Prasad, Alexa head scientist and senior vice president at Amazon.

This vision of ambient intelligence is not that different from the one on Star Trek. But for most of the last decade, the focus has been reactive assistance — for example, ensuring that customer-initiated requests to Alexa meet customers’ expectations.

In the ambient-intelligence vision, an AI service such as Alexa makes sense of the state of your environment, including devices, sensors, objects, people, and activity around you, to help you in every situation where you need assistance — either reactively (customer initiated) or proactively (AI initiated).

Realizing the ultimate potential of ambient intelligence requires Alexa to bring the best of machine-intelligence capabilities together with the best of human-intelligence capabilities, which is the barometer of general intelligence today.

The most pragmatic definition of general intelligence is the ability to (1) learn multiple tasks jointly, versus modeling each task independently; (2) continually adapt to changes within a set of known tasks, without explicit human supervision; and (3) learn new tasks directly by interacting with end users.

While these general-intelligence characteristics apply to all types of AI systems, for interactive AI services such as Alexa, two more attributes are critical: (1) multisensory and multimodal intelligence — the ability to process data from multiple input sensors (e.g., microphones, cameras, ultrasound), fuse sensor data for improved understanding of customer goals, and generate output in different modalities (e.g., speech, text, image, video); and (2) interaction skills — the ability to converse in a human-like manner, which encompasses not just command of natural language but also the ability to recognize and respond to affect.

What this means for our customers is that Alexa will become

  • More competent: Alexa’s functionalities and skills will expand much faster through multitask intelligence. Additionally, Alexa will improve through self-learning, becoming less reliant on labeled data;
  • More natural and conversational: Alexa interactions will be as free flowing as human interactions through multisensory intelligence, generalizable language models, commonsense reasoning, and affect modeling; 
  • More personalized: Alexa will adapt to each individual using speech and computer vision. Further, customers will be able to directly personalize Alexa explicitly and implicitly;  
  • More insightful and proactive: Alexa will anticipate customer needs through awareness of the shared environment, make suggestions, and even act on customers’ behalf;  
  • More trustworthy:  Alexa will have the same attributes that we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

In the past year, Alexa has made considerable progress on all these fronts.

More competent

Alexa receives billions of requests per month, and it is critical for it to answer each of these requests to customers’ satisfaction. In 2021, through advances in automatic speech recognition (ASR), natural-language understanding (NLU), and action resolution, Alexa has become 13% more accurate than the previous year — even as the complexity of customer requests has increased.

Alexa has more than 130,000 third-party skills, whose diversity is a testament to their developers’ creativity. Further, it is available in more than 15 language variants across more than 80 countries, most recently Khaleeji Arabic in Saudi Arabia.

Through advances in large pretrained language models, we are making it easier to expand Alexa’s functionality in terms of both skills and languages. Specifically, we have trained an “Alexa Teacher Model,” a large, pretrained, multilingual model with billions of parameters that encodes language as well as salient patterns of interactions with Alexa. Instead of building new task-specific NLU models (e.g., a skill, a feature, or a language) from scratch on task-specific data, we can build them by fine-tuning the Alexa Teacher model, which provides substantial gains in performance from the same amount of task-specific training data.

While today, the Alexa Teacher Model itself is impractical for real-time language understanding, once it is distilled and fine-tuned, it is compact enough to run in real time but remains more accurate than a similar-sized model trained from scratch. The capacity to generalize across tasks, which the language model enables, is one of the hallmarks of general intelligence.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

Models derived from the Alexa Teacher Model have helped reduce customer friction in several locales and will help facilitate and scale multilingual and multimodal use cases in coming years.

Still, faster deployment of new functionality is not sufficient. Customer interactions with Alexa are ever evolving, so Alexa needs to improve continuously. To that end, we have expanded Alexa’s self-learning capability — in particular, its ability to automatically learn from implicit feedback, e.g., when a customer cuts Alexa off in order to rephrase a query.

Currently, we have two methods for learning from implicit feedback. One is a mechanism that learns to automatically reformulate the ASR output to ensure a more accurate response, and the other automatically annotates interaction data to enable the retraining of NLU models with minimal human involvement.

At this year’s Conference on Empirical Methods in Natural Language Processing (EMNLP), Alexa AI researchers presented papers reporting our progress on both these fronts.

Learning how to rewrite customer requests requires identifying which successful requests are rephrases of unsuccessful ones. Past work on rephrase detection considered sentences in pairs, determining the likelihood that one is a rephrase of the other. In our EMNLP paper, we explain how to use temporal features of the dialogue history to better identify rephrases, with an accuracy improvement of 28% on one test dataset.

Rephrases.png
Earlier rephrase detection models computed similarity scores between pairs of queries (right), which could lead to inaccuracies. A new model instead uses full dialogue context (left) to more accurately detect rephrases by leveraging session-level semantic information. From “Contextual rephrase detection for reducing friction in dialogue systems”.

In the other paper, we describe a scalable framework for using automatically annotated data to continually update our NLU models. This paper shows how to operationalize our previous work on automatic annotation, to deliver immediate results to our customers.

More natural and conversational

As magical as it is to interact with Alexa by simply saying its name, repeating the name during longer interactions feels unnatural: when we’re talking to other people, we don’t use their names on every turn.

This year, we took a major step toward making interactions with Alexa more natural through Conversation Mode, which leverages Echo Show 10’s camera to enable wake-word-free interactions by improving the detection of device directedness (i.e., the intent of addressing Alexa) — even when there are multiple people in the room, conversing with each other as well as with Alexa.

Conversation Mode uses novel computer vision algorithms to gauge customers’ physical orientations toward the device, which indicate whether they’re addressing Alexa or each other. The combination of visual and audio information dramatically improves device-directed-speech detection relative to either modality used independently. Further, on-device speech recognition using fully neural recurrent-neural-network transducers ensures that Alexa recognizes conversational speech with low latency.

We have also started extending Alexa’s conversational memory, going beyond anaphoric references within an interaction session (e.g., “What is its resolution?” while shopping for TVs) to temporarily maintain memory across sessions in certain situations. For example, for high-consideration purchases such as TVs, Alexa remembers your last interaction and starts off your next interaction where you left off. This capability required us to extend Alexa Conversations, which trains deep-learning-based models on synthetic data automatically generated from a small amount of developer-provided data.

As effective as large neural transformer-based language models are for generating textual responses, they lack the commonsense and knowledge grounding they need to be truly useful in large-scale human-machine interactions. This fall, to help foster the type of invention needed to overcome these challenges, we released the commonsense dialogue dataset, which consists of more than 11,000 newly collected dialogues. In each dialogue, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <doctor, LocateAt, hospital> or <specialist, TypeOf, doctor>.

Commonsense dialogue.png
In each dialogue in the commonsense-dialogue dataset, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <piano, RelatedTo, musical> or <musical, RelatedTo, violin>.

Another way to inject common sense into dialogue models is to enable them to import information from online or other sources as needed, on the fly. At the NeurIPS Workshop on Efficient Natural Language and Speech Processing (ENLSP) earlier this month, Alexa researchers won a best-paper award for doing just that. They propose a few-shot-learning approach to training a knowledge-seeking-turn detector, which can recognize customer questions that can’t be answered through existing API calls.

This year, we also published several papers on affect modeling. At the International Conference on Acoustics, Speech, and Signal Processing, we presented the use of contrastive unsupervised learning to improve emotion recognition when training data is scarce; and at the Spoken Language Technologies conference, we described the adaptation of pretrained language models, which have been so successful at natural-language-processing tasks, to the problem of social and emotional commonsense reasoning.

On the flip side, when human speakers recognize shifts in the emotional states of people they’re talking to, they modify the affect in their responses. At the Speech Synthesis Workshop (SSW11) this summer, we extended our previous work on prosody variation to modify the affective characteristics of synthesized speech.

More personalized

AI’s ability to conform to customers as opposed to the other way around differentiates it from other technological advancements. This fall, we launched multiple new services that allow our customers to personalize AI in a self-serve fashion.

With preference teaching, customers can explicitly teach Alexa which skills should handle weather-related questions, which sports teams they follow, and which cuisines they prefer.

CustomAED_embedding.png
A two-dimensional projection of embeddings produced through Custom Sound Event Detection. New sounds are identified by their location in the embedding space.

With Custom Sound Event Detection, customers can train Alexa to recognize new sounds — such as a doorbell ringing — from just a handful of examples. Custom Sound Event Detection uses proximity in a neural network’s representational space to recognize instances of the same sound.

Custom Event Alerts for Ring Video Doorbell cameras and Spotlight cameras works in a similar way. With just a few examples, customers can train their devices to recognize certain states of affairs in the world — such as a shed door that has been left open.

In August, we introduced adaptive volume for Alexa, which lets Echo devices adjust their volume according to ambient-noise levels, so that the perceived noise level stays consistent for the customer. One of the key elements of the approach is algorithmically separating the speech signal and the noise signal, so that they’re separate inputs to the volume adaptation model.

We also launched adaptive listening for US English, an opt-in feature that gives customers more time to finish speaking before Alexa responds, making Alexa a more accessible, patient listener. For speakers with certain speech impediments, adaptive listening has reduced the friction in their Alexa interactions by more than two-thirds.

Finally, Alexa customers can choose to interact with celebrity personalities such as Amitabh Bachchan, Melissa McCarthy, Samuel L. Jackson, or Shaquille O'Neal. At the end of the year, we even brought holiday cheer to Alexa interactions by launching the festive personality of Santa Claus.

More insightful and proactive

Today, one in four smart-home interactions is initiated by Alexa, due to the expansion of its predictive and proactive features such as hunches and routines.

Since 2018, Alexa hunches have recognized anomalies in customers’ daily routines and suggested corrections — noticing that a light was left on at night and offering to turn it off, for instance. This year, we gave customers the option of making hunches more proactive, so Alexa can act on their behalf. When proactive hunches are enabled, Alexa will turn that light off for you without asking first.

Routines let you initiate a sequence of actions with a single trigger word, rather than issuing the same instructions over and over again. Previously, customers had to specify which actions they wanted to string together. But this year, we began phasing in inferred routines. With inferred routines, Alexa recognizes sequences of actions that customers commonly repeat — such as, say, turning on the kitchen lights, starting the coffee maker, and playing the “Wake Up!” playlist — and suggests combining them into a routine. To save the routine, the customer simply accepts Alexa’s suggestion.

We have also continued to expand latent-goal prediction, where Alexa recognizes the larger customer need implied by an initial request and suggests actions or skills to fulfill that need. For instance, a customer asks, “Who won the Celtics game?”, and after answering, Alexa asks, “Would you like to know when the Celtics are playing next?”

Latent-goal prediction uses pointwise mutual information to measure the likelihood of an interaction pattern in a given context relative to its likelihood across all Alexa traffic, and it uses bandit learning to track whether recommendations are helping or not and suppress underperforming experiences.

We have also introduced visual ID on our latest Echo device, Echo Show 15. With visual ID, Alexa shows notes and other reminders just for you (e.g., “Leave a note for Jack that his new passport has arrived”). Visual ID is also available on Astro, an Alexa-enabled home robot that extends environment and state awareness to your physical space. Astro can follow you playing media or find you to deliver calls, messages, timers, alarms, or reminders. With a Ring Protect prosubscription, Astro can also proactively patrol your home and investigate anomalous activities.

More trustworthy

Preserving customer privacy is an uncompromisable tenet for us and an invention area. Differential privacy in particular is one of our key areas of focus. This year, we won a best-paper award at the annual meeting of the Florida Artificial Intelligence Research Society (FLAIRS) for an approach to improving the performance of machine learning models while still meeting the privacy standards imposed by differential-privacy analysis.

At the Conference of the European Chapter of the Association for Computational Linguistics, we presented a method for protecting privacy by automatically rephrasing training text while preserving their semantic sense, in a way that, again, meets differential-privacy standards.

Biased language models still.jpg
Alexa AI researchers constructed a dataset of more than 23,000 text generation prompts, each consisting of six to nine words of a sentence on Wikipedia. The prompts can be used to test language models for bias.
Credit: Glynis Condon

We want Alexa to work equally well for everyone. To that end, in addition to our partnership with the National Science Foundation in the area of fairness in AI, we are pursuing research into detecting and mitigating inappropriate bias. At the ACM Conference on Fairness, Accountability, and Transparency (FAccT) and the Conference of the European Association for Computational Linguistics, we published a pair of papers on measuring bias in language models and detecting bias in datasets for training models that recognize unreliable news.

The path ahead

I recognize that there are multiple paths to general AI, each with years of fundamental research ahead of it. I believe Alexa and its underlying vision of ambient intelligence offer a pragmatic path to general AI— one where every advancement makes Alexa more useful for our customers in their daily lives.

I am in awe at the rate of invention from the Alexa team in the most difficult circumstances. As we wrap up yet another year of the COVID pandemic, I hope the advances the worldwide community of AI researchers is making in every discipline of AI will help us prevent future pandemics.

Research areas

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Sunnyvale
The Region Flexibility Engineering (RFE) team builds and leverages foundational infrastructure capabilities, tools, and datasets needed to support the rapid global expansion of Amazon's SOA infrastructure. Our team focuses on robust and scalable architecture patterns and engineering best practices, driving adoption of ever-evolving and AWS technologies. RFE is looking for a passionate, results-oriented, inventive Data Scientist to refine and execute experiments towards our grand vision, influence and implement technical solutions for regional placement automation, cross-region libraries, and tooling useful for teams across Amazon. As a Data Scientist in Region Flexibility, you will work to enable Amazon businesses to leverage new AWS regions and improve the efficiency and scale of our business. Our project spans across all of Amazon Stores, Digital and Others (SDO) Businesses and we work closely with AWS teams to advise them on SDO requirements. As innovators who embrace new technology, you will be empowered to choose the right highly scalable and available technology to solve complex problems and will directly influence product design. The end-state architecture will enable services to break region coupling while retaining the ability to keep critical business functions within a region. This architecture will improve customer latency through local affinity to compute resources and reduce the blast radius in case of region failures. We leverage off the sciences of data, information processing, machine learning, and generative AI to improve user experience, automation, service resilience, and operational efficiency. Key job responsibilities As an RFE Data Scientist, you will work closely with product and technical leaders throughout Amazon and will be responsible for influencing technical decisions and building data-driven automation capabilities in areas of development/modeling that you identify as critical future region flexibility offerings. You will identify both enablers and blockers of adoption for region flex, and build models to raise the bar in terms of understanding questions related to data set and service relationships and predict the impact of region changes and provide offerings to mitigate that impact. About the team The Regional Flexibility Engineering (RFE) organization supports the rapid global expansion of Amazon's infrastructure. Our projects support Amazon businesses like Stores, Alexa, Kindle, and Prime Video. We drive adoption of ever-evolving and AWS and non-AWS technologies, and work closely with AWS teams to improve AWS public offerings. Our organization focuses on robust and scalable solutions, simple to use, and delivered with engineering best practices. We leverage and build foundational infrastructure capabilities, tools, and datasets that enable Amazon teams to delight our customers. With millions of people using Amazon’s products every day, we appreciate the importance of making our solutions “just work”.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.