“Ambient intelligence" will accelerate advances in general AI

Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

As the world has become more connected, and computing has permeated our surroundings, a new AI paradigm is emerging: ambient intelligence. In this paradigm, our environment responds to our requests and anticipates our needs, provides information or suggests actions, and then recedes into the background.

Rohit Prasad.jpg
Rohit Prasad, Alexa head scientist and senior vice president at Amazon.

This vision of ambient intelligence is not that different from the one on Star Trek. But for most of the last decade, the focus has been reactive assistance — for example, ensuring that customer-initiated requests to Alexa meet customers’ expectations.

In the ambient-intelligence vision, an AI service such as Alexa makes sense of the state of your environment, including devices, sensors, objects, people, and activity around you, to help you in every situation where you need assistance — either reactively (customer initiated) or proactively (AI initiated).

Realizing the ultimate potential of ambient intelligence requires Alexa to bring the best of machine-intelligence capabilities together with the best of human-intelligence capabilities, which is the barometer of general intelligence today.

The most pragmatic definition of general intelligence is the ability to (1) learn multiple tasks jointly, versus modeling each task independently; (2) continually adapt to changes within a set of known tasks, without explicit human supervision; and (3) learn new tasks directly by interacting with end users.

While these general-intelligence characteristics apply to all types of AI systems, for interactive AI services such as Alexa, two more attributes are critical: (1) multisensory and multimodal intelligence — the ability to process data from multiple input sensors (e.g., microphones, cameras, ultrasound), fuse sensor data for improved understanding of customer goals, and generate output in different modalities (e.g., speech, text, image, video); and (2) interaction skills — the ability to converse in a human-like manner, which encompasses not just command of natural language but also the ability to recognize and respond to affect.

What this means for our customers is that Alexa will become

  • More competent: Alexa’s functionalities and skills will expand much faster through multitask intelligence. Additionally, Alexa will improve through self-learning, becoming less reliant on labeled data;
  • More natural and conversational: Alexa interactions will be as free flowing as human interactions through multisensory intelligence, generalizable language models, commonsense reasoning, and affect modeling; 
  • More personalized: Alexa will adapt to each individual using speech and computer vision. Further, customers will be able to directly personalize Alexa explicitly and implicitly;  
  • More insightful and proactive: Alexa will anticipate customer needs through awareness of the shared environment, make suggestions, and even act on customers’ behalf;  
  • More trustworthy:  Alexa will have the same attributes that we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

In the past year, Alexa has made considerable progress on all these fronts.

More competent

Alexa receives billions of requests per month, and it is critical for it to answer each of these requests to customers’ satisfaction. In 2021, through advances in automatic speech recognition (ASR), natural-language understanding (NLU), and action resolution, Alexa has become 13% more accurate than the previous year — even as the complexity of customer requests has increased.

Alexa has more than 130,000 third-party skills, whose diversity is a testament to their developers’ creativity. Further, it is available in more than 15 language variants across more than 80 countries, most recently Khaleeji Arabic in Saudi Arabia.

Through advances in large pretrained language models, we are making it easier to expand Alexa’s functionality in terms of both skills and languages. Specifically, we have trained an “Alexa Teacher Model,” a large, pretrained, multilingual model with billions of parameters that encodes language as well as salient patterns of interactions with Alexa. Instead of building new task-specific NLU models (e.g., a skill, a feature, or a language) from scratch on task-specific data, we can build them by fine-tuning the Alexa Teacher model, which provides substantial gains in performance from the same amount of task-specific training data.

While today, the Alexa Teacher Model itself is impractical for real-time language understanding, once it is distilled and fine-tuned, it is compact enough to run in real time but remains more accurate than a similar-sized model trained from scratch. The capacity to generalize across tasks, which the language model enables, is one of the hallmarks of general intelligence.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

Models derived from the Alexa Teacher Model have helped reduce customer friction in several locales and will help facilitate and scale multilingual and multimodal use cases in coming years.

Still, faster deployment of new functionality is not sufficient. Customer interactions with Alexa are ever evolving, so Alexa needs to improve continuously. To that end, we have expanded Alexa’s self-learning capability — in particular, its ability to automatically learn from implicit feedback, e.g., when a customer cuts Alexa off in order to rephrase a query.

Currently, we have two methods for learning from implicit feedback. One is a mechanism that learns to automatically reformulate the ASR output to ensure a more accurate response, and the other automatically annotates interaction data to enable the retraining of NLU models with minimal human involvement.

At this year’s Conference on Empirical Methods in Natural Language Processing (EMNLP), Alexa AI researchers presented papers reporting our progress on both these fronts.

Learning how to rewrite customer requests requires identifying which successful requests are rephrases of unsuccessful ones. Past work on rephrase detection considered sentences in pairs, determining the likelihood that one is a rephrase of the other. In our EMNLP paper, we explain how to use temporal features of the dialogue history to better identify rephrases, with an accuracy improvement of 28% on one test dataset.

Rephrases.png
Earlier rephrase detection models computed similarity scores between pairs of queries (right), which could lead to inaccuracies. A new model instead uses full dialogue context (left) to more accurately detect rephrases by leveraging session-level semantic information. From “Contextual rephrase detection for reducing friction in dialogue systems”.

In the other paper, we describe a scalable framework for using automatically annotated data to continually update our NLU models. This paper shows how to operationalize our previous work on automatic annotation, to deliver immediate results to our customers.

More natural and conversational

As magical as it is to interact with Alexa by simply saying its name, repeating the name during longer interactions feels unnatural: when we’re talking to other people, we don’t use their names on every turn.

This year, we took a major step toward making interactions with Alexa more natural through Conversation Mode, which leverages Echo Show 10’s camera to enable wake-word-free interactions by improving the detection of device directedness (i.e., the intent of addressing Alexa) — even when there are multiple people in the room, conversing with each other as well as with Alexa.

Conversation Mode uses novel computer vision algorithms to gauge customers’ physical orientations toward the device, which indicate whether they’re addressing Alexa or each other. The combination of visual and audio information dramatically improves device-directed-speech detection relative to either modality used independently. Further, on-device speech recognition using fully neural recurrent-neural-network transducers ensures that Alexa recognizes conversational speech with low latency.

We have also started extending Alexa’s conversational memory, going beyond anaphoric references within an interaction session (e.g., “What is its resolution?” while shopping for TVs) to temporarily maintain memory across sessions in certain situations. For example, for high-consideration purchases such as TVs, Alexa remembers your last interaction and starts off your next interaction where you left off. This capability required us to extend Alexa Conversations, which trains deep-learning-based models on synthetic data automatically generated from a small amount of developer-provided data.

As effective as large neural transformer-based language models are for generating textual responses, they lack the commonsense and knowledge grounding they need to be truly useful in large-scale human-machine interactions. This fall, to help foster the type of invention needed to overcome these challenges, we released the commonsense dialogue dataset, which consists of more than 11,000 newly collected dialogues. In each dialogue, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <doctor, LocateAt, hospital> or <specialist, TypeOf, doctor>.

Commonsense dialogue.png
In each dialogue in the commonsense-dialogue dataset, successive turns are related by relationship triples in the public commonsense knowledge graph Conceptnet, such as <piano, RelatedTo, musical> or <musical, RelatedTo, violin>.

Another way to inject common sense into dialogue models is to enable them to import information from online or other sources as needed, on the fly. At the NeurIPS Workshop on Efficient Natural Language and Speech Processing (ENLSP) earlier this month, Alexa researchers won a best-paper award for doing just that. They propose a few-shot-learning approach to training a knowledge-seeking-turn detector, which can recognize customer questions that can’t be answered through existing API calls.

This year, we also published several papers on affect modeling. At the International Conference on Acoustics, Speech, and Signal Processing, we presented the use of contrastive unsupervised learning to improve emotion recognition when training data is scarce; and at the Spoken Language Technologies conference, we described the adaptation of pretrained language models, which have been so successful at natural-language-processing tasks, to the problem of social and emotional commonsense reasoning.

On the flip side, when human speakers recognize shifts in the emotional states of people they’re talking to, they modify the affect in their responses. At the Speech Synthesis Workshop (SSW11) this summer, we extended our previous work on prosody variation to modify the affective characteristics of synthesized speech.

More personalized

AI’s ability to conform to customers as opposed to the other way around differentiates it from other technological advancements. This fall, we launched multiple new services that allow our customers to personalize AI in a self-serve fashion.

With preference teaching, customers can explicitly teach Alexa which skills should handle weather-related questions, which sports teams they follow, and which cuisines they prefer.

CustomAED_embedding.png
A two-dimensional projection of embeddings produced through Custom Sound Event Detection. New sounds are identified by their location in the embedding space.

With Custom Sound Event Detection, customers can train Alexa to recognize new sounds — such as a doorbell ringing — from just a handful of examples. Custom Sound Event Detection uses proximity in a neural network’s representational space to recognize instances of the same sound.

Custom Event Alerts for Ring Video Doorbell cameras and Spotlight cameras works in a similar way. With just a few examples, customers can train their devices to recognize certain states of affairs in the world — such as a shed door that has been left open.

In August, we introduced adaptive volume for Alexa, which lets Echo devices adjust their volume according to ambient-noise levels, so that the perceived noise level stays consistent for the customer. One of the key elements of the approach is algorithmically separating the speech signal and the noise signal, so that they’re separate inputs to the volume adaptation model.

We also launched adaptive listening for US English, an opt-in feature that gives customers more time to finish speaking before Alexa responds, making Alexa a more accessible, patient listener. For speakers with certain speech impediments, adaptive listening has reduced the friction in their Alexa interactions by more than two-thirds.

Finally, Alexa customers can choose to interact with celebrity personalities such as Amitabh Bachchan, Melissa McCarthy, Samuel L. Jackson, or Shaquille O'Neal. At the end of the year, we even brought holiday cheer to Alexa interactions by launching the festive personality of Santa Claus.

More insightful and proactive

Today, one in four smart-home interactions is initiated by Alexa, due to the expansion of its predictive and proactive features such as hunches and routines.

Since 2018, Alexa hunches have recognized anomalies in customers’ daily routines and suggested corrections — noticing that a light was left on at night and offering to turn it off, for instance. This year, we gave customers the option of making hunches more proactive, so Alexa can act on their behalf. When proactive hunches are enabled, Alexa will turn that light off for you without asking first.

Routines let you initiate a sequence of actions with a single trigger word, rather than issuing the same instructions over and over again. Previously, customers had to specify which actions they wanted to string together. But this year, we began phasing in inferred routines. With inferred routines, Alexa recognizes sequences of actions that customers commonly repeat — such as, say, turning on the kitchen lights, starting the coffee maker, and playing the “Wake Up!” playlist — and suggests combining them into a routine. To save the routine, the customer simply accepts Alexa’s suggestion.

We have also continued to expand latent-goal prediction, where Alexa recognizes the larger customer need implied by an initial request and suggests actions or skills to fulfill that need. For instance, a customer asks, “Who won the Celtics game?”, and after answering, Alexa asks, “Would you like to know when the Celtics are playing next?”

Latent-goal prediction uses pointwise mutual information to measure the likelihood of an interaction pattern in a given context relative to its likelihood across all Alexa traffic, and it uses bandit learning to track whether recommendations are helping or not and suppress underperforming experiences.

We have also introduced visual ID on our latest Echo device, Echo Show 15. With visual ID, Alexa shows notes and other reminders just for you (e.g., “Leave a note for Jack that his new passport has arrived”). Visual ID is also available on Astro, an Alexa-enabled home robot that extends environment and state awareness to your physical space. Astro can follow you playing media or find you to deliver calls, messages, timers, alarms, or reminders. With a Ring Protect prosubscription, Astro can also proactively patrol your home and investigate anomalous activities.

More trustworthy

Preserving customer privacy is an uncompromisable tenet for us and an invention area. Differential privacy in particular is one of our key areas of focus. This year, we won a best-paper award at the annual meeting of the Florida Artificial Intelligence Research Society (FLAIRS) for an approach to improving the performance of machine learning models while still meeting the privacy standards imposed by differential-privacy analysis.

At the Conference of the European Chapter of the Association for Computational Linguistics, we presented a method for protecting privacy by automatically rephrasing training text while preserving their semantic sense, in a way that, again, meets differential-privacy standards.

Biased language models still.jpg
Alexa AI researchers constructed a dataset of more than 23,000 text generation prompts, each consisting of six to nine words of a sentence on Wikipedia. The prompts can be used to test language models for bias.
Credit: Glynis Condon

We want Alexa to work equally well for everyone. To that end, in addition to our partnership with the National Science Foundation in the area of fairness in AI, we are pursuing research into detecting and mitigating inappropriate bias. At the ACM Conference on Fairness, Accountability, and Transparency (FAccT) and the Conference of the European Association for Computational Linguistics, we published a pair of papers on measuring bias in language models and detecting bias in datasets for training models that recognize unreliable news.

The path ahead

I recognize that there are multiple paths to general AI, each with years of fundamental research ahead of it. I believe Alexa and its underlying vision of ambient intelligence offer a pragmatic path to general AI— one where every advancement makes Alexa more useful for our customers in their daily lives.

I am in awe at the rate of invention from the Alexa team in the most difficult circumstances. As we wrap up yet another year of the COVID pandemic, I hope the advances the worldwide community of AI researchers is making in every discipline of AI will help us prevent future pandemics.

Research areas

Related content

FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Control Stack Manager to join our growing software group. You will lead a team of interdisciplinary scientists and software engineers, focused on developing research software and infrastructure to support the development and operation of scalable fault-tolerant quantum computers. You will interface directly with our experimental physics and control hardware teams to develop and drive a vision for the experimental quantum computing software-hardware interface. The ideal candidate will (1) have strong technical breadth across low-level programming, scientific instrumentation, and computer architecture, (2) have excellent communication skills and a proven track record of collaborating with scientists and hardware engineers, and (3) be excited about empowering and growing a team of scientists and software engineers. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. Key job responsibilities - Develop a technical vision for the quantum software-hardware interface in collaboration w/ senior engineers - Collaborate effectively with science and hardware teams to derive software needs and priorities - Own resource allocation and planning activities for your team to meet the needs of (internal) customers - Be comfortable “getting your hands dirty” (i.e. diving deep into architecture, metrics, and implementation) - Regularly provide technical evaluation and feedback to your reports (i.e. via code review, design docs, etc.) - Drive hiring activities for your team — develop growth plans, source candidates, and design interview loops - Coach and empower your employees to become better engineers, scientists, and communicators We are looking for candidates with strong engineering principles, a bias for action, superior problem-solving, and excellent communication skills. Thriving in ambiguity and leading with empathy are essential. As a manager embedded in a broader research science organization, you will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The majority of your time will be spent orchestrating, coaching, and growing the control stack team at the Center for Quantum Computing. This requires collaborating with other science and software teams and working backwards from the needs of our science staff in the context of our larger experimental roadmap. You will translate science needs and priorities into software project proposals and resource allocations. Once project proposals have been accepted, you will support and empower your team to deliver these projects on time while maintaining high standards of engineering excellence. Because many high-level experimental goals have cross-cutting requirements, you’ll need to stay in sync with partner science and software teams. About the team You will be joining the software group within the Center of Quantum Computing. Our team is comprised of scientists and software engineers who are building scalable software that enables quantum computing technologies.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. The ideal candidate would have experience in audio processing, natural language understanding and machine learning. Familiarity with machine translation, foundational models, and speech synthesis will be a plus. As an Applied Scientist, you should be a strong communicator, able to describe scientifically rigorous work to business stakeholders of varying levels of technical sophistication. You will closely partner with the solution development teams, and should be intensely curious about how the research is moving the needle for business. Strong inter-personal and mentoring skills to develop applied science talent in the team is another important requirement.
US, WA, Bellevue
Why this job is awesome? - This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. - MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. - We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. - Do you want to join an innovative team of scientists and engineers who use optimization, machine learning and Gen-AI techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the same-day delivery service of Amazon? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the Delivery Experience Machine Learning team! Key job responsibilities · Research and implement Optimization, ML and Gen-AI techniques to create scalable and effective models in Delivery Experience (DEX) systems · Design and develop optimization models and reinforcement learning models to improve quality of same-day selections · Apply LLM technology to empower CX features · Establishing scalable, efficient, automated processes for large scale data analysis and causal inference
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.