Applying PECOS to product retrieval and text autocompletion

Two KDD papers demonstrate the power and flexibility of Amazon’s framework for “extreme multilabel ranking”.

In April, our research team at Amazon open-sourced our PECOS framework for extreme multilabel ranking (XMR), which is the general problem of classifying an input when you have an enormous space of candidate classes. PECOS presents a way to solve XMR problems that is both accurate and efficient enough for real-time use.

At this year’s Knowledge Discovery and Data Mining Conference (KDD), members of our team presented two papers that demonstrate both the power and flexibility of the PECOS framework.

Retrieved products.png
A comparison of the top ten products returned by the PECOS-based product retrieval system and two predecessors for the query "rose of jericho plant". Products outlined in green were purchased by at least one customer performing that search; products outlined in red were not purchased.

One applies PECOS to the problem of product retrieval, a use case very familiar to customers at the Amazon Store. The other is a less obvious application: session-aware query autocompletion, in which an autocompletion model — which predicts what a customer is going to type — bases its predictions on the customer’s last few text inputs, as well as on statistics for customers at large.

In both cases, we tailor PECOS’s default models to the tasks at hand and, in comparisons with several strong benchmarks, show that PECOS offers the best combination of accuracy and speed.

The PECOS model

The classic case of XMR would be the classification of a document according to a handful of topics, where there are hundreds of thousands of topics to choose from.

We generalize the idea, however, to any problem that, for a given input, finds a few matches from among a large set of candidates. In product retrieval, for instance, the names of products would be “labels” we apply to a query: “Echo Dot”, “Echo Studio”, and other such names would be labels applied to the query “Smart speaker”.

PECOS adopts a three-step solution to the XMR problem. First is the indexing step, in which PECOS groups labels according to topic. Next is the matching step, which matches an input to a topic (which significantly shrinks the space of candidates). Last comes the ranking step, which reranks the labels in the matched topic, based on features of the input.

PECOS-framework.png
The three-stage PECOS model.
Credit: Stacy Reilly

PECOS comes with default models for each of these steps, which we described in a blog post about the April code release. But users can modify those models as necessary, or create their own and integrate them into the PECOS framework.

Product retrieval

For the product retrieval problem, we adapt one of the matching models that comes standard with PECOS: XR-Linear. Details are in the earlier blog post (and in our KDD paper), but XR-Linear reduces computation time by using B-ary trees — a generalization of binary trees to trees whose nodes have B descendants each. The top node of the tree represents the full label set; the next layer down represents B partitions of the full set; the next layer represents B partitions of each partition in the previous layer, and so on.

Connections between nodes of the trees have associated weights, which are multiplied by features of the input query to produce a probability score. Matching is the process of tracing the most-probable routes through the tree and retrieving the topics at the most-probable leaf nodes. To make this process efficient, we use beam search: i.e., at each layer, we limit the number of nodes whose descendants we consider, a limit known as the beam width.

Beam search.gif
An example of linear ranking with a beam width of two. At each level of the tree, two nodes (green) are selected for further exploration. Each of their descendant nodes is evaluated (orange), and two of those are selected for further exploration.
Credit: Giana Bucchino

In our KDD paper on product retrieval, we vary this general model through weight pruning; i.e., we delete edges whose weights fall below some threshold, reducing the number of options the matching algorithm has to consider as it explores the tree. In the paper, we report experiments with several different weight thresholds and beam widths.

We also experimented with several different sets of input features. One was n-grams of query words. For instance, the query “Echo with screen” would produce the 1-grams “Echo”, “with”, “screen”, the 2-grams “Echo with” and “with screen”, and the 3-gram “Echo with screen”. This sensitizes the matching model to phrases that may carry more information than their constituent words.

Similarly, we used n-grams of input characters. If we use the token “#” to denote the end of a word, the same query would produce the character trigrams “Ech”, “cho”, “ho#”, “with”, “ith”, and so on. Character n-grams helps the model deal with typos or word variants.

Finally, we also used TF-IDF (term frequency–inverse document frequency) features, which normalize the frequency of a word in a given text by its frequency across all texts (which filters out common words like “the”). We found that our model performed best when we used all three sets of features.

As benchmarks in our experiments, we used the state-of-the-art linear model and the state-of-the-art neural model and found that our linear approach outperformed both, with a recall@10 — that is, the number of correct labels among the top ten — that was more than double the neural model’s and almost quadruple the linear model’s. At the same time, our model took about one-sixth as long to train as the neural model.

We also found that our model took an average of only 1.25 milliseconds to complete each query, which is fast enough for deployment in a real-time system like the Amazon Store.

Session-aware query autocompletion

Session-aware query autocompletion uses the history of a customer’s recent queries — not just general statistics for the customer base — to complete new queries. The added contextual information means that it can often complete queries accurately after the customer has typed only one or two letters.

To frame this task as an XMR problem, we consider the case in which the input is a combination of the customer’s previous query and the beginning — perhaps just a few characters — of a new query. The labels are queries that an information retrieval system has seen before.

In this case, PECOS didn’t work well out of the box, and we deduced that the problem was the indexing scheme used to cluster labels by topic. PECOS’s default indexing model embeds inputs, or converts them into vectors, then clusters labels according to proximity in the vector space.

We suspected that this was ineffective when the inputs to the autocompletion model were partial phrases — fragments of words that a user is typing in. So we experimented with an indexing model that instead used data structures known as tries(a variation on “tree” that borrows part of the word “retrieve”).

A trie is a tree whose nodes represent strings of letters, where each descendant node extends its parent node’s string by one letter. So if the top node of the trie represents the letter “P”, its descendants might represent the strings “PA” and “PE”; their descendants might represent the strings “PAN”, “PAD”, “PEN”, “PET”, and so on. With a trie, all the nodes that descend from a common parent constitute a cluster.

Clustering using tries dramatically improved the performance of our model, but it also slowed it down: the strings encoded by tries can get very long, which means that tracing a path through the trie can get very time consuming.

So we adopted a hybrid clustering technique that combines tries with embeddings. The top few layers of the hybrid tree constitute a trie, but the nodes that descend from the lowest of these layers represent strings whose embeddings are near that of the parent node in the vector space.

Tree, Trie, Trie-tree hybrid.cloned.png
Three different ways of clustering the eight strings "a", "ab", "abc", "abd", "abfgh", "abfgi", "bcde", and "bcdf". At left is a conventional tree; in the center is a trie; and at right is a trie-tree hybrid.

To ensure that the embeddings in the hybrid tree preserve some of the sequential information encoded by tries, we varied the standard TF-IDF approach. First we applied it at the character level, rather than at the word level, so that it measured the relative frequency of particular strings of letters, not just words.

Then we weighted the frequency statistics, overcounting character strings that occurred at the beginning of words, relative to those that occurred later. This forced the embedding to mimic the string extension logic of the tries.

Once we’d adopted this indexing scheme, we found that the PECOS model outperformed both the state-of-the-art linear model and the state-of-the art neural model, when measured by both mean reciprocal rank and the BLEU metric used to evaluate machine translation models.

The use of tries still came with a performance penalty: our model took significantly longer to process inputs than the earlier linear model did. But its execution time was still below the threshold for real-time application and significantly lower than the neural model’s.

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists.
US, NY, New York
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. This position requires that the candidate selected be a US Citizen. Key job responsibilities As an Data Scientist, you will - Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bangalore
Selection Monitoring team is responsible for making the biggest catalog on the planet even bigger. In order to drive expansion of the Amazon catalog, we use machine learning and cluster-computing technologies to process billions of products and algorithmically find products not already sold on Amazon. We work with structured, semi-structured and Visually Rich Documents using deep learning, NLP and image processing . The role demands a high-performing and flexible candidate who can take responsibility for success of the system and drive solutions from research, prototype, design, coding and deployment. We are looking for Applied Scientists to tackle challenging problems in the areas of information Extraction, Efficient crawling at internet scale. You should have depth and breadth of knowledge in text mining, information extraction from Visually Rich Documents, semi structured data (HTML) and machine learning. You should also have programming and design skills to manipulate Semi-Structured and unstructured data and systems that work at internet scale. You will encounter many challenges, including: - Scale (build models to handle billions of pages), - Accuracy (extreme requirements for precision and recall) - Speed (generate predictions for millions of new or changed pages with low latency) - Diversity (models need to work across different languages, market places and data sources) You will help us to - Build a scalable system which can algorithmically extract information information from world wide web - Intelligently cluster web pages, segment and classify regions , extract relevant information and structure the data available on semi-structured web pages - Build systems that will use existing Knowledge Base to perform open information extraction at scale from visually rich documents. Key job responsibilities - Use AI, NLP and advances in LLMs/SLMs to create scalable solutions for business problems - Efficiently Crawl web, Automate extraction of relevant information from large amounts of Visually Rich Documents and optimize key processes - Design, develop, evaluate and deploy, innovative and highly scalable ML models - Work closely with software engineering teams to drive real-time model implementations - Establish scalable, efficient, automated processes for large scale model development, model validation and model maintenance - Leading projects and mentoring other scientists, engineers in the use of ML techniques
US, CA, Santa Clara
Amazon is looking for world class scientists and engineers to join its AWS AI Labs working within natural language processing. This group is entrusted with developing core data mining, natural language processing, and machine learning solutions for AWS services. At AWS AI Labs you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale natural language processing solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.