Auto Machine Translation and Synchronization for "Dive into Deep Learning"

A system built on Amazon Translate reduces the workload of human translators.

Dive into Deep Learning (D2L.ai) is an open-source textbook that makes deep learning accessible to everyone. It features interactive Jupyter notebooks with self-contained code in PyTorch, JAX, TensorFlow, and MXNet, as well as real-world examples, exposition figures, and math. So far, D2L has been adopted by more than 400 universities around the world, such as the University of Cambridge, Stanford University, the Massachusetts Institute of Technology, Carnegie Mellon University, and Tsinghua University.

The latest updates to "Dive into Deep Learning"

Learn about the newest additions to the popular open-source, interactive book, including the addition of a Google JAX implementation and three new chapters in volume 2.

As a result of the book’s widespread adoption, a community of contributors has formed to work on translations in various languages, including Chinese, Japanese, Korean, Portuguese, Turkish, and Vietnamese. To efficiently handle these multiple languages, we have developed the Auto Machine Translation and Synchronization (AMTS) system using Amazon Translate, which aims to reduce the workload of human translators by 80%. The AMTS can be applied to all the languages for translation, and each language-specific sub-AMTS pipeline has its own unique features based on language characteristics and translator preferences.

In this blog post, we will discuss how we build the AMTS framework architecture, its sub-pipelines, and the building blocks of the sub-pipeline. We will demonstrate and analyze the translations between two language pairs: English ↔ Chinese and English ↔ Spanish. Through these analyses, we will recommend best practices for ensuring translation quality and efficiency.

Framework overview

Customers can use Amazon Translate’s Active Custom Translation (ACT) feature to customize translation output on the fly by providing tailored translation examples in the form of parallel data. Parallel data consists of a collection of textual examples in a source language and the desired translations in one or more target languages. During translation, ACT automatically selects the most relevant segments from the parallel data and updates the translation model on the fly based on those segment pairs. This results in translations that better match the style and content of the parallel data.

The AMTS framework consists of multiple sub-pipelines, each of which handles one language translation — English to Chinese, English to Spanish, etc. Multiple translation sub-pipelines can be processed in parallel.

Fundamentally, the sub-pipeline consists of the following steps:

  • Prepare parallel data: The parallel data consists of a list of textual example pairs, in a source language (e.g., English) and a target language (e.g., Chinese). With AMTS, we first prepare the two language datasets and then combine them into one-to-one pairs.
  • Translate through batch jobs: We use the Amazon Translate API call CreateParallelData to import the input file from the Amazon Simple Storage Service (S3) and create a parallel-data resource in Amazon Translate, ready for batch translation jobs. With the parallel-data resource built in the last step, we customize Amazon Translate and use its asynchronous batch process operation to translate a set of documents in the source language in bulk. The translated documents in the target language are stored in Amazon S3.
AMT_paradata_e2e_v2.png

Parallel-data preparation and creation

In the parallel-data preparation step, we build the parallel-data set out of the source documents (sections of the D2L-enbook) and translations produced by professional human translators (e.g., parallel sections from the D2L-zh book). The software module extracts the text from both documents — ignoring code and picture blocks — and pairs them up, storing them in a CSV file. Examples of parallel data are shown in the table below.

English

Chinese

Nonetheless, language models are of great service even in their limited form. For instance, the phrases “to recognize speech” and “to wreck a nice beach” sound very similar. This can cause ambiguity in speech recognition, which is easily resolved through a language model that rejects the second translation as outlandish. Likewise, in a document summarization algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want to eat, grandma” is much more benign.

尽管如此,语言模型依然是非常有用的。例如,短语“to recognize speech”和“to wreck a nice beach”读音上听起来非常相似。这种相似性会导致语音识别中的歧义,但是这很容易通过语言模型来解决,因为第二句的语义很奇怪。同样,在文档摘要生成算法中,“狗咬人”比“人咬狗”出现的频率要高得多,或者“我想吃奶奶”是一个相当匪夷所思的语句,而“我想吃,奶奶”则要正常得多。

Machine translation refers to the automatic translation of a sequence from one language to another. In fact, this field may date back to 1940s soon after digital computers were invented, especially by considering the use of computers for cracking language codes in World War II. For decades, statistical approaches had been dominant in this field before the rise of end-to-end learning using neural networks. The latter is often called neural machine translation to distinguish itself from statistical machine translation that involves statistical analysis in components such as the translation model and the language model.

机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代,特别是在第二次世界大战中使用计算机破解语言编码。几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据主导地位

Emphasizing end-to-end learning, this book will focus on neural machine translation methods. Different from our language model problem in the last section, whose corpus is in one single language, machine translation datasets are composed of pairs of text sequences that are in the source language and the target language, respectively. Thus, instead of reusing the preprocessing routine for language modeling, we need a different way to preprocess machine translation datasets. In the following, we show how to load the preprocessed data into mini batches for training.

本书的关注点是神经网络机器翻译方法,强调的是端到端的学习。与 上节中的语料库是单一语言的语言模型问题存在不同,机器翻译的数据集是由源语言和目标语言的文本序列对组成的。因此,我们需要一种完全不同的方法来预处理机器翻译数据集,而不是复用语言模型的预处理程序。下面,我们看一下如何将预处理后的数据加载到小批量中用于训练

When the parallel data file is created and ready to use, we upload it to a folder in an S3 bucket and use CreateParallelData to kick off a creation job in Amazon Translate. If we only want to update an existing parallel-data resource with new inputs, the UpdateParallelData API call is the right one to make.

Once the job is completed, we can find the parallel-data resource in the Amazon Translate management console. The resource can be further managed in the AWS Console through the download, update, and delete buttons, as well as through AWS CLI and the public API.

Asynchronous batch translation with parallel data

After the parallel-data resource is created, the next step in the sub-pipeline is to use the Amazon Translate StartTextTranslationJob API call to initiate a batch asynchronous translation. The sub-pipeline uploads the source files into an Amazon S3 bucket folder.

One batch job can handle translation of multiple source documents, and the output files will be put in another S3 bucket folder. In addition to the input and output data configurations, the source language, target language, and prepared parallel-data resource are also specified as parameters in the API invocation.

src_lang = "en" 
tgt_lang =  "zh"
src_fdr = "input-short-test-en2zh"

pd_name = "d2l-parallel-data_v2"

response = translate_client.start_text_translation_job(
            JobName='D2L1',
            InputDataConfig={
                'S3Uri': 's3://'+S3_BUCKET+'/'+src_fdr+'/',
                'ContentType': 'text/html'
            },
            OutputDataConfig={
                'S3Uri': 's3://'+S3_BUCKET+'/output/',
            },
            DataAccessRoleArn=ROLE_ARN,
            SourceLanguageCode=src_lang,
            TargetLanguageCodes=[tgt_lang, ],
            ParallelDataNames=pd_name
)

Depending on the number of input files, the job takes minutes to hours to complete. We can find the job configurations and statuses, including the output file location, on the Amazon Translate management console.

The translated documents are available in the output S3 folder, with the filename <target language>.<source filename>. Users can download them and perform further evaluation.

Using parallel data yields better translation

To evaluate translation performance in each sub-pipeline, we selected five articles from the English version of D2L and translated them into Chinese through the en-zh sub-pipeline. Then we calculated the BLEU score of each translated document. The BLEU (BiLingual Evaluation Understudy) score calculates the similarity of the AMTS translated output to the reference translation by human translator. The number is between 0 and 1; the higher the score, the better the quality of the translation.

We then compare the AMTS-generated results with the translation of the same document using the traditional method (without parallel data). The traditional method is implemented by the TranslateText API call, whose parameters include the name of the source text and the source and target languages.

src_lang = "en" 
tgt_lang =  "zh"    
    
 response = translate_client.translate_text(
         Text = text, 
         TerminologyNames = [],
         SourceLanguageCode = src_lang, 
         TargetLanguageCode = tgt_lang
)

The translation results are compared in the following table, for both English-to-Chinese and Chinese-to-English translation. We observe that the translation with parallel data shows improvement over the traditional method.

Article

EN to ZH

ZH to EN

Without ACT

With ACT

Without ACT

With ACT

approx-training

0.553

0.549

0.717

0.747

bert-dataset

0.548

0.612

0.771

0.831

language-models-and-dataset

0.502

0.518

0.683

0.736

machine-translation-and-dataset

0.519

0.546

0.706

0.788

sentiment-analysis-and-dataset

0.558

0.631

0.725

0.828

Average

0.536

0.5712

0.7204

0.786

Fine-tuning the parallel data to improve translation quality

To further improve the translation quality, we construct the parallel-data pairs in a more granular manner. Instead of extracting parallel paragraphs from source and reference documents and pairing them up, we further split each paragraph into multiple sentences and use sentence pairs as training examples.

EN

ZH

Likewise, in a document summarization algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want to eat, grandma” is much more benign

同样,在文档摘要生成算法中,“狗咬人”比“人咬狗”出现的频率要高得多,或者“我想吃奶奶”是一个相当匪夷所思的语句,而“我想吃,奶奶”则要正常得多

For decades, statistical approaches had been dominant in this field before the rise of end-to-end learning using neural networks

几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据主导地位

In the following, we show how to load the preprocessed data into minibatches for training

下面,我们看一下如何将预处理后的数据加载到小批量中用于训练

We tested both the paragraph pair and sentence pair methods and found that more-granular data (sentence pairs) yields better translation quality than less-granular data (paragraph paragraphs). The comparison is shown in the table below for English ↔ Chinese translation.

Article

EN to ZH

ZH to EN

ACT by “pair of paragraph”

ACT by “pair of sentence”

ACT by “pair of paragraph”

ACT by “pair of sentence”

approx-training

0.549

0.589

0.747

0.77

bert-dataset

0.612

0.689

0.831

0.9

language-models-and-dataset

0.518

0.607

0.736

0.806

machine-translation-and-dataset

0.546

0.599

0.788

0.89

sentiment-analysis-and-dataset

0.631

0.712

0.828

0.862

Average

0.5712

0.6392

0.786

0.8456

Extend usage of parallel data to general machine translation

To extend the usability of parallel data to general machine translation, we need to construct parallel-data sets from a large volume of translated documents. To maximize translation accuracy, the parallel datasets should have the same contexts and subjects as the documents to be translated.

We tested this approach in the English ↔ Spanish sub-pipeline. The parallel data pairs were built from English ↔ Spanish articles crawled from the web using the keyword “machine learning”.

We applied this parallel data in translating an English article (abbreviated DLvsML in the results table) into Spanish and compared the results with those of traditional translation, without parallel data. The BLEU scores show that parallel data with the same subject (“machine learning”) does help to improve the performance of general machine translation.

EN to ES

ES to EN

Without ACT

With ACT

Without ACT

With ACT

DLvsML

0.792

0.824

0.809

0.827

The relative fluency of translations from English to Spanish, with and without ACT, can be seen in the table below.

EN source text

ES reference text (human translation)

ES translation without ACT

ES translation with ACT

Moves through the learning process by resolving the problem on an end-to-end basis.

Pasa por el proceso de aprendizaje mediante la resolución del problema de un extremo a otro.

Avanza en el proceso de aprendizaje resolviendo el problema de un extremo a otro.

Avanza el proceso de aprendizaje resolviendo el problema de forma integral.

Deep learning use cases

Casos de uso del aprendizaje profundo

Casos de uso de aprendizaje profundo

Casos prácticos de aprendizaje profundo

Image caption generation

Generación de subtítulos para imágenes

Generación de leyendas de imágenes

Generación de subtítulos de imagen

Conclusion and best practices

In this post, we introduced the Auto Machine Translation and Synchronization (AMTS) framework and pipelines and their application to English ↔ Chinese and English ↔ Spanish D2L.ai auto-translation. We also discussed best practices for using the Amazon Translate service in the translation pipeline, particularly the advantages of the Active Custom Translation (ACT) feature with parallel data.

  • Leveraging the Amazon Translate service, the AMTS pipeline provides fluent translations. Informal qualitative assessments suggest that the translated texts read naturally and are mostly grammatically correct.
  • In general, the ACT feature with parallel data improves translation quality in the AMTS sub-pipeline. We show that using the ACT feature leads to better performance than using the traditional Amazon Translate real-time translation service.
  • The more granular the parallel data pairs are, the better the translation performance. We recommend constructing the parallel data as pairs of sentences, rather than pairs of paragraphs.

We are working on further improving the AMTS framework to improve translation quality for other languages. Your feedback is always welcome.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact
US, CA, San Francisco
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Must be eligible and available for a full-time (40h/ week) 12 week internship between May 2026 and September 2026. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). A day in the life About the team Amazon’s AGI team is focused on building foundational AI to solve real-world problems at scale, delivering value to all existing businesses in Amazon, and enabling entirely new services and products for people and enterprises around the world.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.