AWS VP of AI and data on computer vision research at Amazon

In his keynote address at CVPR, Swami Sivasubramanian considers the many ways that Amazon incorporates computer vision technology into its products and makes it directly available to Amazon Web Services’ customers.

At this year’s Computer Vision and Pattern Recognition Conference (CVPR) — the premier computer vision conference — Amazon Web Services’ vice president for AI and data, Swami Sivasubramanian, gave a keynote address titled “Computer vision at scale: Driving customer innovation and industry adoption”. What follows is an edited version of that talk.

Related content
As in other areas of AI, generative models and foundation models — such as vision-language models — are a hot topic.

Amazon has been working on AI for more than 25 years, and that includes our ongoing innovations in computer vision. Computer vision is part of Amazon’s heritage, ethos, and future — and today, we’re using it in many parts of the company.

Computer vision technology helps power our e-commerce recommendations engine on Amazon.com, as well as the customer reviews you see on our product pages. Our Prime Air drones use computer vision and deep learning, and the Amazon Show uses computer vision to streamline customer interactions with Alexa. Every day, more than half a million vision-enabled robots assist with stocking inventory, filling orders, and sorting packages for delivery.

I’d like to take a closer look at a few such applications, starting with Amazon Ads.

Amazon Ads Image Generator

Advertisers often struggle to create visually appealing and effective ads, especially when it comes to generating multiple variations and optimizing for different placements and audiences. That’s why we developed an AI-powered image generation tool called Amazon Ads Image Generator.

With this tool, advertisers can input product images, logos, and text prompts, and an AI model will generate multiple versions of visually appealing ads tailored to their brands and messaging. The tool aims to simplify and streamline the ad creation process for advertisers, allowing them to produce engaging visuals more efficiently and cost effectively.

Ad Generator.png
Examples of the types of ad variations generated by the Amazon Ads Image Generator.

To build the Image Generator, we used both Amazon machine learning services such as Amazon SageMaker and Amazon SageMaker Jumpstart and human-in-the-loop workflows that ensure high-quality and appropriate images. The architecture consists of modular microservices and separate components for model development, registry, model lifecycle management, selecting the appropriate model, and tracking the job throughout the service, as well as a customer-facing API.

Amazon One

In the retail setting, we’re reimagining identification, entry, and payment with Amazon One, a fast, convenient, and contactless experience that lets customers leave their wallets — and even their phones — at home. Instead, they can use the palms of their hands to enter a facility, identify themselves, pay, present loyalty cards or event tickets, and even verify their ages.

Amazon One is able to recognize the unique lines, grooves, and ridges of your palm and the pattern of veins just under the skin using infrared light. At registration, proprietary algorithms capture and encrypt your palm image within seconds. The Amazon One device uses this information to create your palm signature and connect it to your credit card or your Amazon account.

To ensure Amazon One’s accuracy, we trained it on millions of synthetically generated images with subtle variations, such as illumination conditions and hand poses. We also trained our system to detect fake hands, such as a highly detailed silicon hand replica, and reject them.

Amazon One synthetic images.jpg
Examples of the types of synthetic images used to train the Amazon One model.

Protecting customer data and safeguarding privacy are foundational design principles with Amazon One. Palm images are never stored on-device. Rather, the images are immediately encrypted and sent to a highly secure zone in the Amazon Web Services (AWS) cloud, custom-built for Amazon One, where the customer’s palm signature is created.

Customers like Crunch Fitness are taking advantage of Amazon One and features like the membership linking capability, which addresses a traditional pain point for both customers and the fitness industry. Crunch Fitness announced that it was the first fitness brand to introduce Amazon One as an entry option for its members at select locations nationwide.

NFL Next Gen Stats

Related content
Spliced binned-Pareto distributions are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

Twenty-five years ago, the height of innovation in NFL broadcasts was the superimposition of a yellow line on the field to mark the first-down distance. These types of on-screen fan experiences have come a long way since then, thanks in large part to AI and machine learning (ML) technologies.

For example, as part of our ongoing partnership with the NFL, we’re delivering Prime Vision with Next Gen Stats during Thursday Night Football to provide insights gleaned by tracking RFID chips embedded in players’ shoulder pads.

One of our most recent innovations is the Defensive Alerts feature shown below, which tracks the movements of defensive players before the snap and uses an ML model to identify “players of interest” most likely to rush the quarterback (circled in red). This unique capability came out of a collaboration between the Thursday Night Football producers, engineers, and our computer vision team.

Defensive alerts.png
The new defensive-alert feature from NFL Nex Gen Stats.

In recent months, Amazon Science has profiled a range of other Amazon computer vision projects, from Project P.I., a fulfillment center technology that uses generative AI and computer vision to help spot, isolate, and remove imperfect products before they’re delivered to customers, to Virtual Try-All, which enables customers to visualize any product in any personal setting.

But for now, I’d like to turn from Amazon products and services that rely on computer vision to the ways in which AWS puts computer vision technologies directly into our customers’ hands.

The AWS ML stack

At AWS, our mission is to make it easy for every developer, data scientist, and researcher to build intelligent applications and leverage AI-enabled services that unlock new value from their data. We do this with the industry’s most comprehensive set of ML tools, which we think of as constituting a three-layer stack.

At the top of the stack are applications that rely on large language models (LLMs), like Amazon Q, our generative-AI-powered assistant for accelerating software development and helping customers extract useful information from their data.

Related content
AWS service enables machine learning innovation on a robust foundation.

At the middle layer, we offer a wide variety of services that enable developers to build powerful AI applications, from our computer vision services and devices to Amazon Bedrock, a secure and easy way to build generative-AI apps with the latest and greatest foundation models and the broadest set of capabilities for security, privacy, and responsible AI.

And at the bottom layer, we provide high-performance, cost-effective infrastructure that is purpose-built for ML.

Let’s look at few examples in more detail, starting with one our most popular vision services: Amazon Rekognition.

Amazon Rekognition

Amazon Rekognition is a fully managed service that uses ML to automatically extract information from images and video files so that customers can build computer vision models and apps more quickly, at lower cost, and with customization for different business needs.

This includes support for a variety of use cases, from content moderation, which enables the detection of unsafe or inappropriate content across images and videos, to custom labels that enable customers to detect objects like brand logos. And most recently we introduced an anti-spoofing feature to help customers verify that only real users, and not spoofs or bad actors, can access their services.

Amazon Textract

Amazon Textract uses optical character recognition to convert images or text — whether from a scanned document, PDF, or a photo of a document — into machine-encoded text. But it goes beyond traditional OCR technology by not only identifying each character, word, and letter but also the contents of fields in forms and information stored in tables.

For example, when presented with queries like the ones below, Textract can create specialized response objects by leveraging a combination of visual, spatial, and language cues. Each object assigns its query a short label, or “alias”. It then provides an answer to the query, the confidence it has in that answer, and the location of the answer on the page.

Textract.png
An example of the outputs of a specialized Textract response object.

Amazon Bedrock

Finally, let’s look at how we’re enabling computer vision technologies with Amazon Bedrock, a fully managed service that makes it easy for customers to build and scale generative-AI applications. Tens of thousands of customers have already selected Amazon Bedrock as the foundation for their generative-AI strategies because it gives them access to the broadest selection of first- and third-party LLMs and foundation models. This includes models from AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, and Stability AI, as well as our own Titan family of models.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

One of those models is the Titan Image Generator, which enables customers to produce high-quality, realistic images or enhance existing images using natural-language prompts. Amazon Science reported on the Titan Image Generator when we launched it last year at our re:Invent conference.

Responsible AI

We remain committed to the responsible development and deployment of AI technology, around which we made a series of voluntary commitments at the White House last year. To that end, we’ve launched new features and techniques such as invisible watermarks and a new method for assessing “hallucinations” in generative models.

By default, all Titan-generated images contain invisible watermarks, which are designed to help reduce the spread of misinformation by providing a discreet mechanism for identifying AI-generated images. AWS is among the first model providers to widely release built-in invisible watermarks that are integrated into the image outputs and are designed to be tamper-resistant.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

Hallucination occurs when the data generated by a generative model do not align with reality, as represented by a knowledge base of “facts”. The alignment between representation and fact is referred to as grounding. In the case of vision-language models, the knowledge base to which generated text must align is the evidence provided in images. There is a considerable amount of work ongoing at Amazon on visual grounding, some of which was presented at CVPR.

One of the necessary elements of controlling hallucinations is to be able to measure them. Consider, for example, the following image-prompt pair and the output generated by a vision-language (VL) model. If the model extends its output with the highest-probability next word, it will hallucinate a fridge where the image includes none:

VL kitchen.png
Input image, prompt, and output probabilities from a vision-language model.

 Existing datasets for evaluating hallucinations typically consist of specific questions like “Is there a refrigerator in this image?” But at CVPR, our team presented a paper describing a new benchmark called THRONE, which leverages LLMs themselves to evaluate hallucinations in response to free-form, open-ended prompts such as “Describe what you see”.

In other work, AWS researchers have found that one of the reasons modern transformer-based vision-language models hallucinate is that they cannot retain information about the input image prompt: they progressively “forget” it as more tokens are generated and longer contexts used.

Related content
Method preserves knowledge encoded in teacher model’s attention heads even when student model has fewer of them.

Recently, state space models have resurfaced ideas from the ’70s in a modern key, stacking dynamical models into modular architectures that have arbitrarily long memory residing in their state. But that memory — much like human memory — grows lossier over time, so it cannot be used effectively for grounding. Hybrid models that combine state space models and attention-based networks (such as transformers) are also gaining popularity, given their high recall capabilities over longer contexts. Literally every week, a growing number of variants appear in the literature.

At Amazon, we want to not only make the existing models available for builders to use but also empower researchers to explore and expand the current set of hybrid models. For this reason, we plan to open-source a class of modular hybrid architectures that are designed to make both memory and inference computation more efficient.

To enable efficient memory, these architectures use a more general elementary module that seamlessly integrates both eidetic (exact) and fading (lossy) memory, so the model can learn the optimal tradeoff. To make inference more efficient, we optimize core modules to run on the most efficient hardware — specifically, AWS Trainium, our purpose-built chip for training machine learning models.

It's an exciting time for AI research, with innovations emerging at a breakneck pace. Amazon is committed to making those innovations available to our customers, both indirectly, in the AI-enabled products and services we offer, and directly, through AWS’s commitment to democratize AI.

Research areas

Related content

US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
IN, KA, Bengaluru
Amazon is looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. As a Speech and Language Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in the area of speech and audio understanding technologies including ASR.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.