Better-performing “25519” elliptic-curve cryptography

Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

Cryptographic algorithms are essential to online security, and at Amazon Web Services (AWS), we implement cryptographic algorithms in our open-source cryptographic library, AWS LibCrypto (AWS-LC), based on code from Google’s BoringSSL project. AWS-LC offers AWS customers implementations of cryptographic algorithms that are secure and optimized for AWS hardware.

Two cryptographic algorithms that have become increasingly popular are x25519 and Ed25519, both based on an elliptic curve known as curve25519. To improve the customer experience when using these algorithms, we recently took a deeper look at their implementations in AWS-LC. Henceforth, we use x/Ed25519 as shorthand for “x25519 and Ed25519”.

Related content
Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

In 2023, AWS released multiple assembly-level implementations of x/Ed25519 in AWS-LC. By combining automated reasoning and state-of-the-art optimization techniques, these implementations improved performance over the existing AWS-LC implementations and also increased assurance of their correctness.

In particular, we prove functional correctness using automated reasoning and employ optimizations targeted to specific CPU microarchitectures for the instruction set architectures x86_64 and Arm64. We also do our best to execute the algorithms in constant time, to thwart side-channel attacks that infer secret information from the durations of computations.

In this post, we explore different aspects of our work, including the process for proving correctness via automated reasoning, microarchitecture (μarch) optimization techniques, the special considerations for constant-time code, and the quantification of performance gains.

Elliptic-curve cryptography

Elliptic-curve cryptography is a method for doing public-key cryptography, which uses a pair of keys, one public and one private. One of the best-known public-key cryptographic schemes is RSA, in which the public key is a very large integer, and the corresponding private key is prime factors of the integer. The RSA scheme can be used both to encrypt/decrypt data and also to sign/verify data. (Members of our team recently blogged on Amazon Science about how we used automated reasoning to make the RSA implementation on Amazon’s Graviton2 chips faster and easier to deploy.)

Elliptic curve.png
Example of an elliptic curve.

Elliptic curves offer an alternate way to mathematically relate public and private keys; sometimes, this means we can implement schemes more efficiently. While the mathematical theory of elliptic curves is both broad and deep, the elliptic curves used in cryptography are typically defined by an equation of the form y2 = x3 + ax2 + bx + c, where a, b, and c are constants. You can plot the points that satisfy the equation on a 2-D graph.

An elliptic curve has the property that a line that intersects it at two points intersects it at at most one other point. This property is used to define operations on the curve. For instance, the addition of two points on the curve can be defined not, indeed, as the third point on the curve collinear with the first two but as that third point’s reflection around the axis of symmetry.

Elliptic-curve addition.gif
Addition on an elliptic curve.

Now, if the coordinates of points on the curve are taken modulo some integer, the curve becomes a scatter of points in the plane, but a scatter that still exhibits symmetry, so the addition operation remains well defined. Curve25519 is named after a large prime integer — specifically, 2255 – 19. The set of numbers modulo the curve25519 prime, together with basic arithmetic operations such as multiplication of two numbers modulo the same prime, define the field in which our elliptic-curve operations take place.

Successive execution of elliptic-curve additions is called scalar multiplication, where the scalar is the number of additions. With the elliptic curves used in cryptography, if you know only the result of the scalar multiplication, it is intractable to recover the scalar, if the scalar is sufficiently large. The result of the scalar multiplication becomes the basis of a public key, the original scalar the basis of a private key.

The x25519 and Ed25519 cryptographic algorithms

The x/Ed25519 algorithms have distinct purposes. The x25519 algorithm is a key agreement algorithm, used to securely establish a shared secret between two peers; Ed25519 is a digital-signature algorithm, used to sign and verify data.

The x/Ed25519 algorithms have been adopted in transport layer protocols such as TLS and SSH. In 2023, NIST announced an update to its FIPS185-6 Digital Signature Standard that included the addition of Ed25519. The x25519 algorithm also plays a role in post-quantum safe cryptographic solutions, having been included as the classical algorithm in the TLS 1.3 and SSH hybrid scheme specifications for post-quantum key agreement.

Microarchitecture optimizations

When we write assembly code for a specific CPU architecture, we use its instruction set architecture (ISA). The ISA defines resources such as the available assembly instructions, their semantics, and the CPU registers accessible to the programmer. Importantly, the ISA defines the CPU in abstract terms; it doesn’t specify how the CPU should be realized in hardware.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The detailed implementation of the CPU is called the microarchitecture, and every μarch has unique characteristics. For example, while the AWS Graviton 2 CPU and AWS Graviton 3 CPU are both based on the Arm64 ISA, their μarch implementations are different. We hypothesized that if we could take advantage of the μarch differences, we could create x/Ed25519 implementations that were even faster than the existing implementations in AWS-LC. It turns out that this intuition was correct.

Let us look closer at how we took advantage of μarch differences. Different arithmetic operations can be defined on curve25519, and different combinations of those operations are used to construct the x/Ed25519 algorithms. Logically, the necessary arithmetic operations can be considered at three levels:

  1. Field operations: Operations within the field defined by the curve25519 prime 2255 – 19.
  2. Elliptic-curve group operations: Operations that apply to elements of the curve itself, such as the addition of two points, P1 and P2.
  3. Top-level operations: Operations implemented by iterative application of elliptic-curve group operations, such as scalar multiplication.
Levels of operations.png
Examples of operations at different levels. Arrows indicate dependency relationships between levels.

Each level has its own avenues for optimization. We focused our μarch-dependent optimizations on the level-one operations, while for levels two and three our implementations employ known state-of-the-art techniques and are largely the same for different μarchs. Below, we give a summary of the different μarch-dependent choices we made in our implementations of x/Ed25519.

  • For modern x86_64 μarchs, we use the instructions MULX, ADCX, and ADOX, which are variations of the standard assembly instructions MUL (multiply) and ADC (add with carry) found in the instruction set extensions commonly called BMI and ADX. These instructions are special because, when used in combination, they can maintain two carry chains in parallel, which has been observed to boost performance up to 30%. For older x86_64 μarchs that don’t support the instruction set extensions, we use more traditional single-carry chains.
  • For Arm64 μarchs, such as AWS Graviton 3 with improved integer multipliers, we use relatively straightforward schoolbook multiplication, which turns out to give good performance. AWS Graviton 2 has smaller multipliers. For this Arm64 μarch, we use subtractive forms of Karatsuba multiplication, which breaks down multiplications recursively. The reason is that, on these μarchs, 64x64-bit multiplication producing a 128-bit result has substantially lower throughput relative to other operations, making the number size at which Karatsuba optimization becomes worthwhile much smaller.

We also optimized level-one operations that are the same for all μarchs. One example concerns the use of the binary greatest-common-divisor (GCD) algorithm to compute modular inverses. We use the “divstep” form of binary GCD, which lends itself to efficient implementation, but it also complicates the second goal we had: formally proving correctness.

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Binary GCD is an iterative algorithm with two arguments, whose initial values are the numbers whose greatest common divisor we seek. The arguments are successively reduced in a well-defined way, until the value of one of them reaches zero. With two n-bit numbers, the standard implementation of the algorithm removes at least one bit total per iteration, so 2n iterations suffice.

With divstep, however, determining the number of iterations needed to get down to the base case seems analytically difficult. The most tractable proof of the bound uses an elaborate inductive argument based on an intricate “stable hull” provably overapproximating the region in two-dimensional space containing the points corresponding to the argument values. Daniel Bernstein, one of the inventors of x25519 and Ed25519, proved the formal correctness of the bound using HOL Light, a proof assistant that one of us (John) created. (For more on HOL Light, see, again, our earlier RSA post.)

Performance results

In this section, we will highlight improvements in performance. For the sake of simplicity, we focus on only three μarchs: AWS Graviton 3, AWS Graviton 2, and Intel Ice Lake. To gather performance data, we used EC2 instances with matching CPU μarchs — c6g.4xlarge, c7g.4xlarge, and c6i.4xlarge, respectively; to measure each algorithm, we used the AWS-LC speed tool.

In the graphs below, all units are operations per second (ops/sec). The “before” columns represent the performance of the existing x/Ed25519 implementations in AWS-LC. The “after” columns represent the performance of the new implementations.

Signing new.png
For the Ed25519 signing operation, the number of operations per second, over the three μarchs, is, on average, 108% higher with the new implementations.
Verification.png
For the Ed25519 verification operation, we increased the number of operations per second, over the three μarchs, by an average of 37%.

We observed the biggest improvement for the x25519 algorithm. Note that an x25519 operation in the graph below includes the two major operations needed for an x25519 key exchange agreement: base-point multiplication and variable-point multiplication.

Ops:sec new.png
With x25519, the new implementation increases the number of operations per second, over the three μarchs, by an average of 113%.

On average, over the AWS Graviton 2, AWS Graviton 3, and Intel Ice Lake microarchitectures, we saw an 86% improvement in performance.

Proving correctness

We develop the core parts of the x/Ed25519 implementations in AWS-LC in s2n-bignum, an AWS-owned library of integer arithmetic routines designed for cryptographic applications. The s2n-bignum library is also where we prove the functional correctness of the implementations using HOL Light. HOL Light is an interactive theorem prover for higher-order logic (hence HOL), and it is designed to have a particularly simple (hence light) “correct by construction” approach to proof. This simplicity offers assurance that anything “proved” has really been proved rigorously and is not the artifact of a prover bug.

Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

We follow the same principle of simplicity when we write our implementations in assembly. Writing in assembly is more challenging, but it offers a distinct advantage when proving correctness: our proofs become independent of any compiler.

The diagram below shows the process we use to prove x/Ed25519 correct. The process requires two different sets of inputs: first is the algorithm implementation we’re evaluating; second is a proof script that models both the correct mathematical behavior of the algorithm and the behavior of the CPU. The proof is a sequence of functions specific to HOL Light that represent proof strategies and the order in which they should be applied. Writing the proof is not automated and requires developer ingenuity.

From the algorithm implementation and the proof script, HOL Light either determines that the implementation is correct or, if unable to do so, fails. HOL Light views the algorithm implementation as a sequence of machine code bytes. Using the supplied specification of CPU instructions and the developer-written strategies in the proof script, HOL Light reasons about the correctness of the execution.

CI integration.png
CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

This part of the correctness proof is automated, and we even implement it inside s2n-bignum’s continuous-integration (CI) workflow. The workflow covered in the CI is highlighted by the red dotted line in the diagram below. CI integration provides assurance that no changes to the algorithm implementation code can be committed to s2n-bignum’s code repository without successfully passing a formal proof of correctness.

The CPU instruction specification is one of the most critical ingredients in our correctness proofs. For the proofs to be true in practice, the specification must capture the real-world semantics of each instruction. To improve assurance on this point, we apply randomized testing against the instruction specifications on real hardware, “fuzzing out” inaccuracies.

Constant time

We designed our implementations and optimizations with security as priority number one. Cryptographic code must strive to be free of side channels that could allow an unauthorized user to extract private information. For example, if the execution time of cryptographic code depends on secret values, then it might be possible to infer those values from execution times. Similarly, if CPU cache behavior depends on secret values, an unauthorized user who shares the cache could infer those values.

Our implementations of x/Ed25519 are designed with constant time in mind. They perform exactly the same sequence of basic CPU instructions regardless of the input values, and they avoid any CPU instructions that might have data-dependent timing.

Using x/Ed25519 optimizations in applications

AWS uses AWS-LC extensively to power cryptographic operations in a diverse set of AWS service subsystems. You can take advantage of the x/Ed25519 optimizations presented in this blog by using AWS-LC in your application(s). Visit AWS-LC on Github to learn more about how you can integrate AWS-LC into your application.

To allow easier integration for developers, AWS has created bindings from AWS-LC to multiple programming languages. These bindings expose cryptographic functionality from AWS-LC through well-defined APIs, removing the need to reimplement cryptographic algorithms in higher-level programming languages. At present, AWS has open-sourced bindings for Java and Rust — the Amazon Corretto Cryptographic Provider (ACCP) for Java, and AWS-LC for Rust (aws-lc-rs). Furthermore, we have contributed patches allowing CPython to build against AWS-LC and use it for all cryptography in the Python standard library. Below we highlight some of the open-source projects that are already using AWS-LC to meet their cryptographic needs.

Open-source projects.png
Open-source projects using AWS-LC to meet their cryptographic needs.

We are not done yet. We continue our efforts to improve x/Ed25519 performance as well as pursuing optimizations for other cryptographic algorithms supported by s2n-bignum and AWS-LC. Follow the s2n-bignum and AWS-LC repositories for updates.

Research areas

Related content

US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.