Bringing the power of deep learning to data in tables

Amazon’s TabTransformer model is now available through SageMaker JumpStart and the official release of the Keras open-source library.

In recent years, deep neural networks have been responsible for most top-performing AI systems. In particular, natural-language processing (NLP) applications are generally built atop Transformer-based language models such as BERT.

One exception to the deep-learning revolution has been applications that rely on data stored in tables, where machine learning approaches based on decision trees have tended to work better.

At Amazon Web Services, we have been working to extend Transformers from NLP to table data with TabTransformer, a novel, deep, tabular, data-modeling architecture for supervised and semi-supervised learning.

Related content
Novel pretraining method enables increases of 5% to 14% on five different evaluation metrics.

Starting today, TabTransformer is available through Amazon SageMaker JumpStart, where it can be used for both classification and regression tasks. TabTransformer can be accessed through the SageMaker JumpStart UI inside of SageMaker Studio or through Python code using SageMaker Python SDK. To get started with TabTransformer on SageMaker JumpStart, please refer to the program documentation.

We are also thrilled to see that TabTransformer has gained attention from people across industries: it has been incorporated into the official repository of Keras, a popular open-source software library for working with deep neural networks, and it has featured in posts on Towards Data Science and Medium. We also presented a paper on the work at the ICLR 2021 Workshop on Weakly Supervised Learning.

The TabTransformer solution

TabTransformer uses Transformers to generate robust data representations — embeddings — for categorical variables, or variables that take on a finite set of discrete values, such as months of the year. Continuous variables (such as numerical values) are processed in a parallel stream.

We exploit a successful methodology from NLP in which a model is pretrained on unlabeled data, to learn a general embedding scheme, then fine-tuned on labeled data, to learn a particular task. We find that this approach increases the accuracy of TabTransformer, too.

In experiments on 15 publicly available datasets, we show that TabTransformer outperforms the state-of-the-art deep-learning methods for tabular data by at least 1.0% on mean AUC, the area under the receiver-operating curve that plots false-positive rate against false-negative rate. We also show that it matches the performance of tree-based ensemble models.

Related content
The Amazon-sponsored FEVEROUS dataset and shared task challenge researchers to create more advanced fact-checking systems.

In the semi-supervised setting, when labeled data is scarce, DNNs generally outperform decision-tree-based models, because they are better able to take advantage of unlabeled data. In our semi-supervised experiments, all of the DNNs outperformed decision trees, but with our novel unsupervised pre-training procedure, TabTransformer demonstrated an average 2.1% AUC lift over the strongest DNN benchmark.

Finally, we also demonstrate that the contextual embeddings learned from TabTransformer are highly robust against both missing and noisy data features and provide better interpretability.

Tabular data

To get a sense of the problem our method addresses, consider a table where the rows represent different samples and the columns represent both sample features (predictor variables) and the sample label (the target variable). TabTransformer takes the features of each sample as input and generates an output to best approximate the corresponding label.

In a practical industry setting, where the labels are partially available (i.e., semi-supervised learning scenarios), TabTransformer can be pre-trained on all the samples without any labels and fine-tuned on the labeled samples.

Additionally, companies usually have one large table (e.g., describing customers/products) that contains multiple target variables, and they are interested in analyzing this data in multiple ways. TabTransformer can be pre-trained on the large number of unlabeled samples once and fine-tuned multiple times for multiple target variables.

The architecture of TabTransformer is shown below. In our experiments, we use standard feature-engineering techniques to transform data types such as text, zip codes, and IP addresses into either numeric or categorical features.

Graphic shows the architecture of TabTransformer.
The architecture of TabTransformer.

Pretraining procedures

We explore two different types of pre-training procedures: masked language modeling (MLM) and replaced-token detection (RTD). In MLM, for each sample, we randomly select a certain portion of features to be masked and use the embeddings of the other features to reconstruct the masked features. In RTD, for each sample, instead of masking features, we replace them with random values chosen from the same columns.

In addition to comparing TabTransformer to baseline models, we conducted a study to demonstrate the interpretability of the embeddings produced by our contextual-embedding component.

In that study, we took contextual embeddings from different layers of the Transformer and computed a t-distributed stochastic neighbor embedding (t-SNE) to visualize their similarity in function space. More precisely, after training TabTransformer, we pass the categorical features in the test data through our trained model and extract all contextual embeddings (across all columns) from a certain layer of the Transformer. The t-SNE algorithm is then used to reduce each embedding to a 2-D point in the t-SNE plot.

T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.
T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.

The figure above shows the 2-D visualization of embeddings from the last layer of the Transformer for the dataset bank marketing. We can see that semantically similar classes are close to each other and form clusters (annotated by a set of labels) in the embedding space.

For example, all of the client-based features (colored markers), such as job, education level, and marital status, stay close to the center, and non-client-based features (gray markers), such as month (last contact month of the year) and day (last contact day of the week), lie outside the central area. In the bottom cluster, the embedding of having a housing loan stays close to that of having defaulted, while the embeddings of being a student, single marital status, not having a housing loan, and tertiary education level are close to each other.

Related content
Watch the keynote presentation by Alex Smola, AWS vice president and distinguished scientist, presented at the AutoML@ICML2020 workshop.

The center figure is the t-SNE plot of embeddings before being passed through the Transformer (i.e., from layer 0). The right figure is the t-SNE plot of the embeddings the model produces when the Transformer layers are removed, converting it into an ordinary multilayer perceptron (MLP). In those plots, we do not observe the types of patterns seen in the left plot.

Finally, we conduct extensive experiments on 15 publicly available datasets, using both supervised and semi-supervised learning. In the supervised-learning experiment, TabTransformer matched the performance of the state-of-the-art gradient-boosted decision-tree (GBDT) model and significantly outperformed the prior DNN models TabNet and Deep VIB.

Model name

Mean AUC (%)

TabTransformer

82.8 ± 0.4

MLP

81.8 ± 0.4

Gradient-boosted decision trees

82.9 ± 0.4

Sparse MLP

81.4 ± 0.4

Logistic regression

80.4 ± 0.4

TabNet

77.1 ± 0.5

Deep VIB

80.5 ± 0.4

Model performance with supervised learning. The evaluation metric is mean standard deviation of AUC score over the 15 datasets for each model. The larger the number, the better the result. The top two numbers are bold.

In the semi-supervised-learning experiment, we pretrain two TabTransformer models on the entire unlabeled set of training data, using the MLM and RTD methods respectively; then we fine-tune both models on labeled data.

As baselines, we use the semi-supervised learning methods pseudo labeling and entropy regularization to train both a TabTransformer network and an ordinary MLP. We also train a gradient-boosted-decision-tree model using pseudo-labeling and an MLP using a pretraining method called the swap-noise denoising autoencoder.

# Labeled data

50

200

500

TabTransformer-RTD

66.6 ± 0.6

70.9 ± 0.6

73.1 ± 0.6

TabTransformer-MLM

66.8 ± 0.6

71.0 ± 0.6

72.9 ± 0.6

ER-MLP

65.6 ± 0.6

69.0 ± 0.6

71.0 ± 0.6

PL-MLP

65.4 ± 0.6

68.8 ± 0.6

71.0 ± 0.6

ER-TabTransformer

62.7 ± 0.6

67.1 ± 0.6

69.3 ± 0.6

PL-TabTransformer

63.6 ± 0.6

67.3 ± 0.7

69.3 ± 0.6

DAE

65.2 ± 0.5

68.5 ± 0.6

71.0 ± 0.6

PL-GBDT

56.5 ± 0.5

63.1 ± 0.6

66.5 ± 0.7

Semi-supervised-learning results on six datasets, each with more than 30,000 unlabeled data points, and different number of labeled data points. Evaluation metric is mean AUC in percentage.

# Labeled data

50

200

500

TabTransformer-RTD

78.6 ± 0.6

81.6 ± 0.5

83.4 ± 0.5

TabTransformer-MLM

78.5 ± 0.6

81.0 ± 0.6

82.4 ± 0.5

ER-MLP

79.4 ± 0.6

81.1 ± 0.6

82.3 ± 0.6

PL-MLP

79.1 ± 0.6

81.1 ± 0.6

82.0 ± 0.6

ER-TabTransformer

77.9 ± 0.6

81.2 ± 0.6

82.1 ± 0.6

PL-TabTransformer

77.8 ± 0.6

81.0 ± 0.6

82.1 ± 0.6

DAE

78.5 ± 0.7

80.7 ± 0.6

82.2 ± 0.6

PL-GBDT

73.4 ± 0.7

78.8 ± 0.6

81.3 ± 0.6

Semi-supervised learning results on nine datasets, each with fewer than 30,000 data points, and different numbers of labeled data points. Evaluation metric is mean AUC in percentage.

To gauge relative performance with different amounts of unlabeled data, we split the set of 15 datasets into two subsets. The first set consists of the six datasets that containing more than 30,000 data points. The second set includes the remaining nine datasets.

When the amount of unlabeled data is large, TabTransformer-RTD and TabTransformer-MLM significantly outperform all the other competitors. Particularly, TabTransformer-RTD/MLM improvement are at least 1.2%, 2.0%, and 2.1% on mean AUC for the scenarios of 50, 200, and 500 labeled data points, respectively. When the number of unlabeled data becomes smaller, as shown in Table 3, TabTransformer-RTD still outperforms most of its competitors but with a marginal improvement.

Acknowledgments: Ashish Khetan, Milan Cvitkovic, Zohar Karnin

Related content

US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, development, evaluate and deploy innovative and highly scalable models for predictive learning Research and implement novel machine learning and statistical approaches Work closely with software engineering teams to drive real-time model implementations and new feature creations Work closely with business owners and operations staff to optimize various business operations Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Mentor other scientists and engineers in the use of ML techniques
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Control Stack Manager to join our growing software group. You will lead a team of interdisciplinary scientists and software engineers, focused on developing research software and infrastructure to support the development and operation of scalable fault-tolerant quantum computers. You will interface directly with our experimental physics and control hardware teams to develop and drive a vision for the experimental quantum computing software-hardware interface. The ideal candidate will (1) have strong technical breadth across low-level programming, scientific instrumentation, and computer architecture, (2) have excellent communication skills and a proven track record of collaborating with scientists and hardware engineers, and (3) be excited about empowering and growing a team of scientists and software engineers. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. Key job responsibilities - Develop a technical vision for the quantum software-hardware interface in collaboration w/ senior engineers - Collaborate effectively with science and hardware teams to derive software needs and priorities - Own resource allocation and planning activities for your team to meet the needs of (internal) customers - Be comfortable “getting your hands dirty” (i.e. diving deep into architecture, metrics, and implementation) - Regularly provide technical evaluation and feedback to your reports (i.e. via code review, design docs, etc.) - Drive hiring activities for your team — develop growth plans, source candidates, and design interview loops - Coach and empower your employees to become better engineers, scientists, and communicators We are looking for candidates with strong engineering principles, a bias for action, superior problem-solving, and excellent communication skills. Thriving in ambiguity and leading with empathy are essential. As a manager embedded in a broader research science organization, you will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The majority of your time will be spent orchestrating, coaching, and growing the control stack team at the Center for Quantum Computing. This requires collaborating with other science and software teams and working backwards from the needs of our science staff in the context of our larger experimental roadmap. You will translate science needs and priorities into software project proposals and resource allocations. Once project proposals have been accepted, you will support and empower your team to deliver these projects on time while maintaining high standards of engineering excellence. Because many high-level experimental goals have cross-cutting requirements, you’ll need to stay in sync with partner science and software teams. About the team You will be joining the software group within the Center of Quantum Computing. Our team is comprised of scientists and software engineers who are building scalable software that enables quantum computing technologies.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video recommendation systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation Science team owns science solution to power personalized experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. The ideal candidate would have experience in audio processing, natural language understanding and machine learning. Familiarity with machine translation, foundational models, and speech synthesis will be a plus. As an Applied Scientist, you should be a strong communicator, able to describe scientifically rigorous work to business stakeholders of varying levels of technical sophistication. You will closely partner with the solution development teams, and should be intensely curious about how the research is moving the needle for business. Strong inter-personal and mentoring skills to develop applied science talent in the team is another important requirement.