Bringing the power of deep learning to data in tables

Amazon’s TabTransformer model is now available through SageMaker JumpStart and the official release of the Keras open-source library.

In recent years, deep neural networks have been responsible for most top-performing AI systems. In particular, natural-language processing (NLP) applications are generally built atop Transformer-based language models such as BERT.

One exception to the deep-learning revolution has been applications that rely on data stored in tables, where machine learning approaches based on decision trees have tended to work better.

At Amazon Web Services, we have been working to extend Transformers from NLP to table data with TabTransformer, a novel, deep, tabular, data-modeling architecture for supervised and semi-supervised learning.

Related content
Novel pretraining method enables increases of 5% to 14% on five different evaluation metrics.

Starting today, TabTransformer is available through Amazon SageMaker JumpStart, where it can be used for both classification and regression tasks. TabTransformer can be accessed through the SageMaker JumpStart UI inside of SageMaker Studio or through Python code using SageMaker Python SDK. To get started with TabTransformer on SageMaker JumpStart, please refer to the program documentation.

We are also thrilled to see that TabTransformer has gained attention from people across industries: it has been incorporated into the official repository of Keras, a popular open-source software library for working with deep neural networks, and it has featured in posts on Towards Data Science and Medium. We also presented a paper on the work at the ICLR 2021 Workshop on Weakly Supervised Learning.

The TabTransformer solution

TabTransformer uses Transformers to generate robust data representations — embeddings — for categorical variables, or variables that take on a finite set of discrete values, such as months of the year. Continuous variables (such as numerical values) are processed in a parallel stream.

We exploit a successful methodology from NLP in which a model is pretrained on unlabeled data, to learn a general embedding scheme, then fine-tuned on labeled data, to learn a particular task. We find that this approach increases the accuracy of TabTransformer, too.

In experiments on 15 publicly available datasets, we show that TabTransformer outperforms the state-of-the-art deep-learning methods for tabular data by at least 1.0% on mean AUC, the area under the receiver-operating curve that plots false-positive rate against false-negative rate. We also show that it matches the performance of tree-based ensemble models.

Related content
The Amazon-sponsored FEVEROUS dataset and shared task challenge researchers to create more advanced fact-checking systems.

In the semi-supervised setting, when labeled data is scarce, DNNs generally outperform decision-tree-based models, because they are better able to take advantage of unlabeled data. In our semi-supervised experiments, all of the DNNs outperformed decision trees, but with our novel unsupervised pre-training procedure, TabTransformer demonstrated an average 2.1% AUC lift over the strongest DNN benchmark.

Finally, we also demonstrate that the contextual embeddings learned from TabTransformer are highly robust against both missing and noisy data features and provide better interpretability.

Tabular data

To get a sense of the problem our method addresses, consider a table where the rows represent different samples and the columns represent both sample features (predictor variables) and the sample label (the target variable). TabTransformer takes the features of each sample as input and generates an output to best approximate the corresponding label.

In a practical industry setting, where the labels are partially available (i.e., semi-supervised learning scenarios), TabTransformer can be pre-trained on all the samples without any labels and fine-tuned on the labeled samples.

Additionally, companies usually have one large table (e.g., describing customers/products) that contains multiple target variables, and they are interested in analyzing this data in multiple ways. TabTransformer can be pre-trained on the large number of unlabeled samples once and fine-tuned multiple times for multiple target variables.

The architecture of TabTransformer is shown below. In our experiments, we use standard feature-engineering techniques to transform data types such as text, zip codes, and IP addresses into either numeric or categorical features.

Graphic shows the architecture of TabTransformer.
The architecture of TabTransformer.

Pretraining procedures

We explore two different types of pre-training procedures: masked language modeling (MLM) and replaced-token detection (RTD). In MLM, for each sample, we randomly select a certain portion of features to be masked and use the embeddings of the other features to reconstruct the masked features. In RTD, for each sample, instead of masking features, we replace them with random values chosen from the same columns.

In addition to comparing TabTransformer to baseline models, we conducted a study to demonstrate the interpretability of the embeddings produced by our contextual-embedding component.

In that study, we took contextual embeddings from different layers of the Transformer and computed a t-distributed stochastic neighbor embedding (t-SNE) to visualize their similarity in function space. More precisely, after training TabTransformer, we pass the categorical features in the test data through our trained model and extract all contextual embeddings (across all columns) from a certain layer of the Transformer. The t-SNE algorithm is then used to reduce each embedding to a 2-D point in the t-SNE plot.

T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.
T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.

The figure above shows the 2-D visualization of embeddings from the last layer of the Transformer for the dataset bank marketing. We can see that semantically similar classes are close to each other and form clusters (annotated by a set of labels) in the embedding space.

For example, all of the client-based features (colored markers), such as job, education level, and marital status, stay close to the center, and non-client-based features (gray markers), such as month (last contact month of the year) and day (last contact day of the week), lie outside the central area. In the bottom cluster, the embedding of having a housing loan stays close to that of having defaulted, while the embeddings of being a student, single marital status, not having a housing loan, and tertiary education level are close to each other.

Related content
Watch the keynote presentation by Alex Smola, AWS vice president and distinguished scientist, presented at the AutoML@ICML2020 workshop.

The center figure is the t-SNE plot of embeddings before being passed through the Transformer (i.e., from layer 0). The right figure is the t-SNE plot of the embeddings the model produces when the Transformer layers are removed, converting it into an ordinary multilayer perceptron (MLP). In those plots, we do not observe the types of patterns seen in the left plot.

Finally, we conduct extensive experiments on 15 publicly available datasets, using both supervised and semi-supervised learning. In the supervised-learning experiment, TabTransformer matched the performance of the state-of-the-art gradient-boosted decision-tree (GBDT) model and significantly outperformed the prior DNN models TabNet and Deep VIB.

Model name

Mean AUC (%)

TabTransformer

82.8 ± 0.4

MLP

81.8 ± 0.4

Gradient-boosted decision trees

82.9 ± 0.4

Sparse MLP

81.4 ± 0.4

Logistic regression

80.4 ± 0.4

TabNet

77.1 ± 0.5

Deep VIB

80.5 ± 0.4

Model performance with supervised learning. The evaluation metric is mean standard deviation of AUC score over the 15 datasets for each model. The larger the number, the better the result. The top two numbers are bold.

In the semi-supervised-learning experiment, we pretrain two TabTransformer models on the entire unlabeled set of training data, using the MLM and RTD methods respectively; then we fine-tune both models on labeled data.

As baselines, we use the semi-supervised learning methods pseudo labeling and entropy regularization to train both a TabTransformer network and an ordinary MLP. We also train a gradient-boosted-decision-tree model using pseudo-labeling and an MLP using a pretraining method called the swap-noise denoising autoencoder.

# Labeled data

50

200

500

TabTransformer-RTD

66.6 ± 0.6

70.9 ± 0.6

73.1 ± 0.6

TabTransformer-MLM

66.8 ± 0.6

71.0 ± 0.6

72.9 ± 0.6

ER-MLP

65.6 ± 0.6

69.0 ± 0.6

71.0 ± 0.6

PL-MLP

65.4 ± 0.6

68.8 ± 0.6

71.0 ± 0.6

ER-TabTransformer

62.7 ± 0.6

67.1 ± 0.6

69.3 ± 0.6

PL-TabTransformer

63.6 ± 0.6

67.3 ± 0.7

69.3 ± 0.6

DAE

65.2 ± 0.5

68.5 ± 0.6

71.0 ± 0.6

PL-GBDT

56.5 ± 0.5

63.1 ± 0.6

66.5 ± 0.7

Semi-supervised-learning results on six datasets, each with more than 30,000 unlabeled data points, and different number of labeled data points. Evaluation metric is mean AUC in percentage.

# Labeled data

50

200

500

TabTransformer-RTD

78.6 ± 0.6

81.6 ± 0.5

83.4 ± 0.5

TabTransformer-MLM

78.5 ± 0.6

81.0 ± 0.6

82.4 ± 0.5

ER-MLP

79.4 ± 0.6

81.1 ± 0.6

82.3 ± 0.6

PL-MLP

79.1 ± 0.6

81.1 ± 0.6

82.0 ± 0.6

ER-TabTransformer

77.9 ± 0.6

81.2 ± 0.6

82.1 ± 0.6

PL-TabTransformer

77.8 ± 0.6

81.0 ± 0.6

82.1 ± 0.6

DAE

78.5 ± 0.7

80.7 ± 0.6

82.2 ± 0.6

PL-GBDT

73.4 ± 0.7

78.8 ± 0.6

81.3 ± 0.6

Semi-supervised learning results on nine datasets, each with fewer than 30,000 data points, and different numbers of labeled data points. Evaluation metric is mean AUC in percentage.

To gauge relative performance with different amounts of unlabeled data, we split the set of 15 datasets into two subsets. The first set consists of the six datasets that containing more than 30,000 data points. The second set includes the remaining nine datasets.

When the amount of unlabeled data is large, TabTransformer-RTD and TabTransformer-MLM significantly outperform all the other competitors. Particularly, TabTransformer-RTD/MLM improvement are at least 1.2%, 2.0%, and 2.1% on mean AUC for the scenarios of 50, 200, and 500 labeled data points, respectively. When the number of unlabeled data becomes smaller, as shown in Table 3, TabTransformer-RTD still outperforms most of its competitors but with a marginal improvement.

Acknowledgments: Ashish Khetan, Milan Cvitkovic, Zohar Karnin

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.