Building product graphs automatically

Automated system tripled the number of facts in a product graph.

Knowledge graphs are data structures that capture relationships between data in a very flexible manner. They can help make information retrieval more precise, and they can also be used to uncover previously unknown relationships in large data sets.

Manually assembling knowledge graphs is extremely time consuming, so researchers in the field have long been investigating techniques for producing them automatically. The approach has been successful for domains such as movie information, which feature relatively few types of relationships and abound in sources of structured data.

Automatically producing knowledge graphs is much more difficult in the case of retail products, where the types of relationships between data items are essentially unbounded — color for clothes, flavor for candy, wattage for electronics, and so on — and where much useful information is stored in free-form product descriptions, customer reviews, and question-and-answer forums.

AutoKnow.png
The inputs to AutoKnow include an existing product taxonomy, user logs, and a product catalogue. AutoKnow automatically combines data from all three sources into a product graph, adding new product types to the taxonomy, adding new values for product attributes, correcting errors, and identifying synonyms.
Credit: Stacy Reilly

This year, at the Association for Computing Machinery’s annual conference on Knowledge Discovery and Data Mining (KDD), my colleagues and I will present a system we call AutoKnow, a suite of techniques for automatically augmenting product knowledge graphs with both structured data and data extracted from free-form text sources.

With AutoKnow, we increased the number of facts in Amazon’s consumables product graph (which includes the categories grocery, beauty, baby, and health) by almost 200%, identifying product types with 87.7% accuracy.

We also compared each of our system’s five modules, which execute tasks such as product type extraction and anomaly detection, to existing systems and found that they improved performance across the board, often quite dramatically (an improvement of more than 300% in the case of product type extraction).

The AutoKnow framework

Knowledge graphs typically consist of entities — the nodes of the graph, often depicted as circles — and relations between the entities — usually depicted as line segments connecting nodes. The entity “drink”, for example, might be related to the entity “coffee” by the relationship “contains”. The entity “bag of coffee” might be related to the entity “16 ounces” by the relationship “has_volume”.

In a narrow domain such as movie information, the number of entity types — such as director, actor, and editor — is limited, as are the number of relationships — directed, performed in, edited, and so on. Moreover, movie sources often provide structured data, explicitly listing cast and crew.

In a retail domain, on the other hand, the number of product types tends to grow as the graph expands. Each product type has its own set of attributes, which may be entirely different from the next product type’s — color and texture, for instance, versus battery type and effective range. And the vital information about a product — that a coffee mug gets too hot to hold, for instance — could be buried in the free-form text of a review or question-and-answer section.

AutoKnow addresses these challenges with five machine-learning-based processing modules, each of which builds on the outputs of the one that precedes it:

  1. Taxonomy enrichment extends the number of entity types in the graph;
  2. Relation discovery identifies attributes of products, those attributes’ range of possible values (different flavors or colors, for instance), and, crucially, which of those attributes are important to customers;
  3. Data imputation uses the entity types and relations discovered by the previous modules to determine whether free-form text associated with products contains any information missing from the graph;
  4. Data cleaning sorts through existing and newly extracted data to see whether any of it was misclassified in the source texts; and
  5. Synonym finding attempts to identify entity types and attribute values that have the same meaning.

The ontology suite

The inputs to AutoKnow include an existing product graph; a catalogue of products that includes some structured information, such as labeled product names, and unstructured product descriptions; free-form product-related information, such as customer reviews and sets of product-related questions and answers; and product query data.

To identify new products, the taxonomy enrichment module uses a machine learning model that labels substrings of the product titles in the source catalogue. For instance, in the product title “Ben & Jerry’s black cherry cheesecake ice cream”, the model would label the substring “ice cream” as the product type.

The same model also labels substrings that indicate product attributes, for use during the relation discovery step. In this case, for instance, it would label “black cherry cheesecake” as the flavor attribute. The model is trained on product descriptions whose product types and attributes have already been classified according to a hand-engineered taxonomy.

Next, the taxonomy enrichment module classifies the newly extracted product types according to their hypernyms, or the broader product categories that they fall under. Ice cream, for instance, falls under the hypernym “Ice cream and novelties”, which falls under the hypernym “Frozen”, and so on.

The hypernym classifier uses data about customer interactions, such as which products customers viewed or purchased after a single query. Again, the machine learning model is trained on product data labeled according to an existing taxonomy.

Relation discovery

The relation discovery module classifies product attributes according to two criteria. The first is whether the attribute applies to a given product. The attribute flavor, for instance, applies to food but not to clothes.

The second criterion is how important the attribute is to buyers of a particular product. Brand name, it turns out, is more important to buyers of snack foods than to buyers of produce.

Both classifiers analyze data provided by providers — product descriptions — and by customers — reviews and Q&As. With both types of input data, the classifiers consider the frequency with which attribute words occur in texts associated with a given product; with the provider data, they also consider how frequently a given word occurs across instances of a particular product type.

The models were trained on data that had been annotated to indicate whether particular attributes applied to the associated products.

The data suite

Step three, data imputation, looks for terms in product descriptions that may fit the new product and attribute categories identified in the previous steps, but which have not yet been added to the graph.

This step uses embeddings, which represent descriptive terms as points in a vector space, where related terms are grouped together. The idea is that, if a number of terms clustered together in the space share the same attribute or product type, the unlabeled terms in the same cluster should, too.

Previously, my Amazon colleagues and I, together with colleagues at the University of Utah, demonstrated state-of-the-art data imputation results by training a sequence-tagging model, much like the one I described above, which labeled “black cherry cheesecake” as a flavor.

Here, however, we vary that approach by conditioning the sequence-tagging model on the product type: that is, the tagged sequence output by the model depends on the product type, whose embedding we include among the inputs.

Cleaning module.png
The architecture of the AutoKnow cleaning module.

The next step is data cleaning, which uses a machine learning model based on the Transformer architecture. The inputs to the model are a textual product description, an attribute (flavor, volume, color, etc.), and a value for that attribute (chocolate, 16 ounces, blue, etc.). Based on the product description, the model decides whether the attribute value is misassigned.

To train the model, we collect valid attribute-value pairs that occur across many instances of a single product type (all ice cream types, for instance, have flavors); these constitute the positive examples. We also generate negative examples by replacing the values in valid attribute-value pairs with mismatched values.

Finally, we analyze our product and attribute sets to find synonyms that should be combined in a single node of the product graph. First, we use customer interaction data to identify items that were viewed during the same queries; their product and attribute descriptions are candidate synonyms.

Then we use a combination of techniques to filter the candidate terms. These include edit distance (a measure of the similarity of two strings of characters) and a neural network. In tests, this approach yielded a respectable .83 area under the precision-recall curve.

In ongoing work, we’re addressing a number of outstanding questions, such as how to handle products with multiple hypernyms (products that have multiple “parents” in the product hierarchy), cleaning data before it’s used to train our models, and using image data as well as textual data to improve our models’ performance.

Watch a video presentation of the AutoKnow paper from Jun Ma, senior applied scientist.

AutoKnow: Self-driving knowledge collection for products of thousands of types | Amazon Science

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, CA, Palo Alto
Sponsored Products and Brands (SPB) is at the heart of Amazon Advertising, helping millions of advertisers—from small businesses to global brands—connect with customers at the moments that matter most. Our advertising solutions enable sellers, vendors, and brand owners to grow their businesses by reaching shoppers with relevant, engaging ads across Amazon's store and beyond. We're obsessed with delivering measurable results for advertisers while creating a delightful shopping experience for customers. Are you interested in defining the science behind the future of advertising? Sponsored Products and Brands science teams are pioneering breakthrough agentic AI systems—pushing the boundaries of large language models, autonomous reasoning, planning, and decision-making to build intelligent agents that fundamentally transform how advertisers succeed on Amazon. As an SPB applied science leader, you'll have end-to-end ownership of the product and scientific vision, research agenda, model architectures, and evaluation frameworks required to deliver state-of-the-art agentic AI solutions for our advertising customers. You'll get to work on problems that are fast-paced, scientifically rich, and deeply consequential. You'll also be able to explore novel research directions, take bold bets, and collaborate with remarkable scientists, engineers, and product leaders. We'll look for you to bring your diverse perspectives, deep technical expertise, and scientific rigor to make Amazon Advertising even better for our advertisers and customers. With global opportunities for talented scientists and science leaders, you can decide where a career in Amazon Ads Science takes you! We are kicking off a new initiative within SPB to leverage agentic AI solutions to revolutionize how advertisers create, manage, and optimize their advertising campaigns. This is a unique opportunity to lead a business-critical applied science initiative from its inception—defining the scientific charter, establishing foundational research pillars, and building a multi-year science roadmap for transformative impact. As the single-threaded applied science leader, you will build and guide a dedicated team of applied scientists, research scientists, and machine learning engineers, working closely with cross-functional engineering and product partners, to research, develop, and deploy agentic AI systems that fundamentally reimagine the advertiser journey. Your charter will begin with advancing the science behind intelligent agents that simplify campaign creation, automate optimization decisions through autonomous reasoning and planning, and deliver personalized advertising strategies at scale. You will pioneer novel approaches in areas such as LLM-based agent architectures, multi-step planning and tool use, retrieval-augmented generation, reinforcement learning from human and business feedback, and robust evaluation methodologies for agentic systems. You will expand to proactively identify and tackle the next generation of AI-powered advertising experiences across the entire SPB portfolio. This high-visibility role places you as the science leader driving our strategy to democratize advertising success—making it effortless for advertisers of all sizes to achieve their business goals while delivering relevant experiences for Amazon customers. Key job responsibilities Build, mentor, and lead a new, high-performing applied science organization of applied scientists, research scientists, and engineers, fostering a culture of scientific excellence, innovation, customer obsession, and ownership. Define, own, and drive the long-term scientific and product vision and research strategy for agentic AI-powered advertising experiences across Sponsored Products and Brands—identifying the highest-impact research problems and charting a path from exploration to production. Lead the research, design, and development of novel agentic AI models and systems—including LLM-based agent architectures, multi-agent orchestration, planning and reasoning frameworks, tool-use mechanisms, and retrieval-augmented generation pipelines—that deliver measurable value for advertisers and create delightful, intuitive experiences. Establish rigorous scientific methodology and evaluation frameworks for assessing agent performance, reliability, safety, and advertiser outcomes, setting a high bar for experimentation, reproducibility, and offline-to-online consistency. Partner closely with senior business, engineering, and product leaders across Amazon Advertising to translate advertiser pain points and business opportunities into well-defined science problems, and deliver cohesive, production-ready solutions that drive advertiser success. Drive execution from research to production at scale, ensuring models and agentic systems meet high standards for quality, robustness, latency, safety, and reliability for mission-critical advertising services operating at Amazon scale. Champion a culture of scientific inquiry and technical depth that encourages bold experimentation, publication of novel research, relentless simplification, and continuous improvement. Communicate your team's scientific vision, research breakthroughs, strategy, and progress to senior leadership and key stakeholders, ensuring alignment with broader Amazon Advertising objectives and contributing to Amazon's position at the forefront of applied AI. Develop a science roadmap directly tied to advertiser outcomes, revenue growth, and business plans, delivering on commitments for high-impact research and modeling initiatives that shape the future of AI-powered digital advertising.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Selling Partner Trust & Store Integrity Science Team. We are looking for a talented scientist who is passionate to build advanced machine learning systems that help manage the safety of millions of transactions every day and scale up our operation with automation. Key job responsibilities Innovate with the latest GenAI/LLM/VLM technology to build highly automated solutions for efficient risk evaluation and automated operations Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to create impactful business value Learn, explore and experiment with the latest machine learning advancements to create the best customer experience A day in the life You will be working within a dynamic, diverse, and supportive group of scientists who share your passion for innovation and excellence. You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our marketplace through intelligent automation. As a key member of our team, you'll develop and deploy state-of-the-art machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the safety and security of the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of honest entrepreneurs and businesses. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, account takeovers, and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient seller verification, transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and exclusive access to coverage of live sports. All customers regardless of whether they have a Prime membership or not, can access programming from subscriptions such as Apple TV, Peacock Premium Plus, HBO Max, FOX One, Crunchyroll and MGM+, as well as more than 900 free ad-support (FAST) Channels, rent or buy titles, and enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Interested in influencing what customers around the world see when they turn on Prime Video? The Prime Video Personalization and Discovery team matches customers with the right content at the right time, at all touch points throughout the content discovery journey. We are looking for a customer-focused, solutions-oriented Senior Data Scientist to build and guide new data-driven frameworks to understand what makes new personalization and content discovery innovations successful for users and the business. You'll be part of an embedded science team on projects that are fast-paced, challenging, and ultimately influence what millions of customers around the world see when the log into Prime Video. The ideal candidate brings strong problem-solving skills, stakeholder communication skills, and the ability to balance technical rigor with delivery speed and customer impact. You will build cross-functional support within Prime Video, assess business problems, define metrics, and support iterative scientific solutions that balance short-term delivery with long-term science roadmaps. Key job responsibilities - Use advanced statistical and machine learning techniques to extract insights from complex, large-scale data sets - Design and implement end-to-end data science workflows, from data acquisition and cleaning to model development, testing, and deployment - Support scalable, self-service data analyses by building datasets for analytics, reporting and ML use cases - Partner with product stakeholders and science peers to identify strategic data-driven opportunities to improve the customer experience - Communicate findings, conclusions, and recommendations to technical and non-technical stakeholders - Stay up-to-date on the latest data science tools, techniques, and best practices and help evangelize them across the organization
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. We are looking for an Applied Scientist to push the envelope of AI content generation. As a scientist at Prime Video, you will contribute directly to productions using innovative tools in computer vision, deep learning, and generative AI to transform entertainment experiences. The ideal candidate has deep knowledge in one of: graphics, deep learning, generative AI and/or reinforcement learning and experience applying them real-world problems. You understand tradeoffs between business needs and model complexity, and you take calculated risks in developing rapid prototypes and iterative model improvements. You are excited to learn from and alongside seasoned scientists, engineers, and business leaders. You are an excellent communicator and effectively translate technical findings into production systems and business action (and customer delight). Key job responsibilities • Build generative AI models that create production-ready content, including movie content, localized assets, and visual marketing materials used across Prime Video's global platform. • Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, complexity. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models. • Run experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Share knowledge and research outcomes via internal and external conferences and journal publications A day in the life In this role, you will invent science and systems for content localization, generation, including graphics and machine learning-based modeling systems. You will work with a team of scientists and product managers to design customer-facing products, and you will work with technology teams to productize and maintain the associated solutions.