Building systems that automatically adjust to workloads and data

Tim Kraska, who joined Amazon this summer to build the new Learned Systems research group, explains the power of “instance optimization”.

As an associate professor of electrical engineering and computer science at MIT, Tim Kraska researched instance-optimized database systems, or systems that can automatically adapt to new workloads with minimal human involvement.

Tim Kraska.png
Tim Kraska, an associate professor of electrical engineering and computer science at MIT and director of applied science for Amazon Web Services.

Earlier this year, Amazon hired Kraska and his team to further develop this technology. Currently, Kraska is on leave from MIT, and as director of applied science for Amazon Web Services (AWS), he is helping establish Amazon’s new Learned Systems Group (LSG), which will focus on integrating machine learning (ML) into system design. The group’s first project is to bring instance optimization to AWS’s data warehousing service, Amazon Redshift. Kraska spoke with Amazon Science about the value of instance optimization and the attraction of doing research in an industrial setting.

  1. Q. 

    What is instance optimization?

    A. 

    If you develop a system from scratch for a particular use case, you are able to get orders of magnitude better performance, as you can tailor every system component to that use case. However, in most cases you don't want to do that, because it's a huge effort. In the case of databases, the saying is that it normally takes at least seven years to get the system so that it's usable and stable.

    The idea of instance optimization is that, rather than build one system per use case, we build a system that self-adjusts — instance-optimizes itself — to a particular scenario to get as close as possible to a hand-tuned solution.

  2. Q. 

    How does it do that?

    A. 

    There are different ways to achieve the self-adjustment. With any system, you have a bunch of knobs and a bunch of design choices. If you take Redshift, you can tune the buffer size; you can create materialized views; you can create different types of sort orders. And database administrators can adjust these knobs and make design choices, based on their workloads, to get better performance.

    Related content
    Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

    The first form of self-adjustment is to make those decisions automatically. You have, let's say, a machine learning model that observes the workload and figures out how to adjust these knobs and what materialized views and sort keys to create. Redshift already does this, for example, with a feature called Automated Materialized Views, which accelerates query performance.

    The next step is that in some cases it's possible to replace components through novel techniques that allow either more customization or tuning in ways that weren’t previously possible.

    To give you an example, in the case of data layouts, current systems mainly support partitioning data by one attribute, which could be a composite key. The reason is that the developers of these systems always thought that someone has to eventually make these design choices manually. Thus, in the past, the tendency was to reduce the number of tuning parameters as much as possible.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    This, of course, changes the moment you have automatic tuning techniques using machine learning, which can explore the space much more efficiently. And now maybe the opposite is true: providing more degrees of freedom and more knobs is a good thing, as they offer more potential for customization and, thus, better performance.

    The third self-adjustment method is where you deeply embed machine learning models into a component of the system to give you much better performance than is currently possible.

    Every database, for example, has a query optimizer that takes a SQL query and optimizes it to an execution plan, which describes how to actually run that query. This query optimizer is a complex piece of software, which requires very carefully tuned heuristics and cost models to figure out how best to do this translation. The state of the art now is that you treat this as a deep-learning problem. So we talk at that stage about learned components.

    Query patterns.png
    A comparison of two different approaches to learning to detect query patterns, using graph convolution networks (top) and tree convolution networks (bottom). From “LSched: A workload-aware learned query scheduler for analytical database systems”.

    The ultimate goal is to build a system out of learned components and to have everything tuned in a holistic way. There's a model monitoring the workload, watching the system, and making the right adjustments — potentially in ways no human is able to.

  3. Q. 

    Is it true that you developed an improved sorting algorithm? I thought that sorting was pretty much a solved problem.

    A. 

    That's right. It's still surprising. The way it works is, you learn a model over the distribution of the data — the cumulative distribution function, or CDF, which tells you where an item falls into the probability mass. Let's assume that in an e-commerce database, you have a table with orders, each order has a date, and you want to sort the table by date. Now you can build the CDF over the date attribute, and then you can ask a question like “How many orders happened before January 1st, 2021?”, and it spits out the probability.

    The nice thing about that is that, essentially, the CDF function allows you to ask, “Given an order date, where in the sorted order does it fit?” Assuming the model is perfect, it suddenly allows you to do sorting in O(n). [I.e., the sorting time is proportional to the number of items being sorted, n, not n2nlogn, or the like.]

    Learned sorting.png
    Recursively applying the cumulative distribution function (CDF) to sort items in an array in O(n) time. From “The case for a learned sorting algorithm”.

    Radix sort is also O(n), but it can be memory intensive, as the efficiency depends on the domain size — how many unique values there could possibly be. If your domain is one to a million, it might still be easily do-able in memory. If it's one to a billion, it already gets a little bit harder. If it's one to — pick your favorite power of ten — it eventually becomes impossible to do it in one pass.

    The model-based approach tries to overcome that in a clever way. You know roughly where items land, so you can place them into their approximate position and use insertion sort to correct for model errors. It’s a trick we used for indexes, but it turns out that you can use the same thing for sorting.

  4. Q. 

    For you, what was the appeal of doing research in the industrial setting?

    A. 

    One of the reasons we are so attracted to working for Amazon is access to information about real-world workloads. Instance optimization is all about self-adjusting to the workload and the data. And it's extremely hard to test it in academia.

    There are a few benchmark datasets, but internally, they often use random-number generators to create the data and to determine when and what types of queries are issued against the system.

    We fundamentally have to rethink how we build systems. ... Whenever a developer has to make a trade-off between two techniques or defines a constant, the developer should think about if this constant or trade-off shouldn’t be automatically tuned.
    Tim Kraska

    Because of this randomness, first of all, there are no interesting usage patterns — say, when are the dashboarding queries running, versus the batch jobs for loading the data. All that is gone. Even worse, the data itself doesn’t contain any interesting patterns, which either makes it too hard, because everything is random, or too easy, because everything is random.

    For example, when we tested our learned query optimizer on a very common data-warehousing benchmark, we found that we barely got any improvements, whereas for real-world workloads, we saw big improvements.

    We dug in a little bit, and it turns out that for common benchmarks, like TPC-H, every single database vendor makes sure that the query plans are close to perfect. They manually overfit the system to the benchmark. And this translates in no way to any real-world customer. No customer really runs queries exactly like the benchmark. Nobody does.

    Working with Redshift’s amazing development team and having access to real-world information provides a huge advantage here. It allows us not only to evaluate if our previous techniques actually work in practice, but it also helps us to focus on developing new techniques, which actually make a big difference to users by providing better performance or improved ease of use.

  5. Q. 

    So the collaboration with the Redshift team is going well?

    A. 

    It has been great and, in many ways, exceeded our expectations. When we joined, we certainly had some anxiety about how we would be working with the Redshift team, how much we would still be able to publish, and so on. For example, I know many researchers in industry labs who struggle to get access to data or have actual impact on the product.

    None of these turned out to be a real concern. Not only did we define our own research agenda, but we are also already deeply involved with many exciting projects and have a whole list of exciting things we want to publish about.

  6. Q. 

    Do you still collaborate with MIT?

    A. 

    Yes, and it is very much encouraged. Amazon recently created a Science Hub at MIT, and as part of the hub, AWS is also sponsoring DSAIL, a lab focused on ML-for-systems research. This allows us to work very closely with researchers at MIT.

  7. Q. 

    Some of the techniques you’ve discussed, such as sorting, have a wide range of uses. Will the Learned Systems Group work with groups other than Redshift?

    A. 

    We decided to focus on Redshift first as we had already a lot of experience with instance optimization for analytical systems, but we’ve already started to talk to other teams and eventually plan to apply the ideas more broadly.

    I believe that we fundamentally have to rethink how we build systems and system components. For example, whenever a developer has to make a trade-off between two techniques or defines a constant, the developer should think about if this constant or trade-off shouldn’t be automatically tuned. In many cases, the developer would probably approach the design of the component completely differently if she knows that the component is expected to self-adjust to the workload and data.

    Related content
    Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

    This is true not only for data management systems but across the entire software stack. For example, there has been work on improving network packet classification using learned indexes, spark scheduling algorithms using reinforcement learning, and video compression using deep-learning techniques to provide a better experience when bandwidth is limited. All these techniques will eventually impact the customer experience in the form of performance, reduced cost, or ease of use.

    For good reason, we already see a lot of adaptation of ML to improve systems at Amazon. Redshift, for example, offers multiple ML-based features — like Automated Materialized Views or automatic workload management. With the Learned Systems Group, we hope to accelerate that trend, with fully instance-optimized systems that self-adjust to workloads and data in ways no traditional system can. And that will provide better performance, cost, and ease of use for AWS customers.

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
CA, ON, Toronto
Amazon Games recherche un.e Chercheuse, Chercheur scientifique pour créer de nouvelles approches révolutionnaires en ML, RL et IA Générative qui raviront les joueuses et les joueurs. Dans ce rôle, vous collaborerez avec les Scientifiques en apprentissage automatique d'Amazon Games et Amazon Science pour imaginer et développer des outils, des processus et des fonctionnalités alimentés par l'IA générative à travers Amazon Games. Chez Amazon Games, notre ambition est de créer d’expériences inédites et audacieuses qui rassemblent et cultivent les communautés de joueurs et de joueuses. Notre équipe d'experts de l'industrie développe des jeux multijoueurs AAA et des propriétés intellectuelles originales, avec des équipes à Seattle, Orange County, San Diego, Montréal et Bucarest. À travers nos divisions - Studios, Publishing et Prime Gaming et en collaboration avec des partenaires externes, nous développons, publions et livrons des jeux et des expériences de contenu exceptionnelles pour les joueurs et joueuses. /// Amazon Games is seeking a highly effective Research Scientist to create new ground breaking ML, RL and Generative AI (Gen AI) approaches that delights player. In this role, you will collaborate with Amazon Science and Amazon Games Applied Scientists to research and develop generative AI-powered tools, pipelines and features across Amazon Games. At Amazon Games, our ambition is to create bold new experiences that foster community in and around our games. Our team of game industry veterans develops AAA multiplayer games and original IPs, with teams in Seattle, Orange County, San Diego, Montreal, and Bucharest. Amazon Games, through its Studios, Publishing, and Prime Gaming divisions collaborating with external partners, aims to develop, publish, and deliver compelling AAA games and content experiences for gamers to discover. Key job responsibilities Responsabilités - Rechercher, implémenter et produire des services d'IA/ML ambitieux et complexes pour Amazon Games. - Collaborer avec les équipes d'ingénieries, de conceptions et artistiques pour concevoir, développer et intégrer de nouveaux outils d'IA générative dans les flux de travail des équipes de développement. - Identifier et résoudre de manière proactive les problèmes qui affectent la qualité de vie des joueuses et les joueurs, des opérations et d’autres développeuses et développeurs. - Rester à jour et analyser les dernières avancées en technologie d'IA générative, et améliorer continuellement les fonctionnalités des produits lorsque des améliorations significatives en termes de coût, d'évolutivité, de qualité ou de fonctionnalité peuvent être réalisées. /// Responsibilities - Research, implement, and productionize ambitious and complex AI/ML services for Amazon Games. - Collaborate with game team engineers, designers and artists to design, develop, and integrate new generative AI tools into developer workflows. - Proactively identify and solve problems that affect the quality of life for players, operations, and other developers. - Stay up to date with and analyze the latest advancements in generative AI technology, and continuously improve product features where meaningful improvements in cost, scalability, quality, or functionality can be achieved. A day in the life Une journée type - Vous vous épanouissez dans un environnement collaboratif où vos décisions ont un impact et une influence significatifs. - Vous exprimer votre passion par la création d'expériences de jeu qui ravissent les joueurs et les joueuses. - Vous proposez d'excellents flux de travail, outils et innovations de jeu à vos collègues et aux équipes de développement et recherchez constamment l'amélioration. - Vous souhaitez faire partie de quelque chose d'excitant et unique dans l'écosystème du jeu. /// A day in the life - You thrive in a collaborative environment where your decisions have significant impact and influence. - You are passionate about building game experiences that delight players. - You deliver great workflows, tools, and game innovations to your fellow developers and constantly seek improvement. - You want to be part of something exciting and unique in the gaming ecosystem. About the team À propos de l'équipe L'équipe de recherche en IA d'Amazon Games Studio se concentre sur l'innovation en intelligence artificielle dans le domaine du jeu vidéo. Notre équipe hautement qualifiée et multidisciplinaire travaille sur l'apprentissage automatique, l'apprentissage par renforcement et l'IA générative pour réinventer le développement des jeux. Nous travaillons de près avec les équipes internes et nos studios partenaires pour donner vie à leur vision créative. Notre mission est d'utiliser l'IA de manière responsable pour transformer l'expérience de jeu, enrichir les récits, et fournir aux créateurs et créatrices des outils pratiques pour optimiser leurs chaînes de production. /// About the team The Amazon Games Studio AI Research team focuses on artificial intelligence innovation in gaming. Our highly skilled, multi-discipline team works across Machine Learning, Reinforcement Learning, and Generative AI to reimagine game development. We work closely with first-party game developers and partner studios to bring creative visions to life. Our mission is to use AI responsibly to transform gameplay experiences, enrich narratives, and provide creators with practical tools to optimize their production pipelines.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We’re looking for an Applied Scientist who will research, design, and implement machine learning solutions to unsolved, real world problems at Amazon Robotics. We invent new improvements every day. Amazon Robotics empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. The Scanless Tech organization builds products that eliminate the need for explicit scanning in the Amazon Fulfillment Network. We research, design, and implement solutions for automated identification of objects and object movement by removing the need for manual scanning of identifiers, like barcodes. We integrate hardware, software, and machine learning, developing products that are solution-agnostic while enabling easy integration from installation to execution. We push the boundaries of current solutions to solve customer challenges and impact many areas of Amazon’s operations. For our associates, our systems affect user experience by improving safety and ergonomics. For our large fleet or robots, they improve overall throughput and efficiency. Come collaborate with us and develop pioneering applications in a highly exciting and innovative environment where your solutions will impact tens of thousands of users for every minute of their working day! Key job responsibilities * Identifying creative solutions for challenging research problems in computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts on robots and other workcells to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Scientific Writing A day in the life Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Scanless Tech teams build products that eliminate the need for explicit scanning in the Amazon Fulfillment Network. We research, design, and implement solutions for automated identification of objects and object movement by removing the need for manual scanning of identifiers, like barcodes. We integrate hardware, software, and machine learning, developing products that are solution-agnostic while enabling easy integration from installation to execution. We push the boundaries of current solutions to solve customer challenges. Our solutions directly impact many areas of Amazon’s operations. For our associates, our systems affect user experience by improving safety and ergonomy. For our large fleet or robots, they improve overall throughput and efficiency.