Combining knowledge graphs, quickly and accurately

Novel cross-graph-attention and self-attention mechanisms enable state-of-the-art performance.

Knowledge graphs are a way of representing information that can capture complex relationships more easily than conventional databases. At Amazon, we use knowledge graphs to represent the hierarchical relationships between product types on amazon.com; the relationships between creators and content on Amazon Music and Prime Video; and general information for Alexa’s question-answering service — among other things.

Expanding a knowledge graph often involves integrating it with another knowledge graph. But different graphs may use different terms for the same entities, which can lead to errors and inconsistencies during integration. Hence the need for automated techniques of entity alignment, or determining which elements of different graphs refer to the same entities.

In a paper accepted to the Web Conference, my colleagues and I describe a new entity alignment technique that factors in information about the graph in the vicinity of the entity name. In tests involving the integration of two movie databases, our system improved upon the best-performing of ten baseline systems by 10% on a metric called area under the precision-recall curve (PRAUC), which evaluates the trade-off between true-positive and true-negative rates.

Despite our system’s improved performance, it remains highly computationally efficient. One of the baseline systems we used for comparison is a neural-network-based system called DeepMatcher, which was specifically designed with scalability in mind. On two tasks, involving movie databases and music databases, our system reduced training time by 95% compared to DeepMatcher, while offering enormous improvements in PRAUC.

To implement our model, we used a new open-source tool called DGL (Deep Graph Library), which was developed by researchers in Amazon Web Services.

A graph is a mathematical object that consists of nodes, usually depicted as circles, and edges, usually depicted as line segments connecting the circles. Network diagrams, organizational charts, and flow charts are familiar examples of graphs.

Our work specifically addresses the problem of merging multi-type knowledge graphs, or knowledge graphs whose nodes represent more than one type of entity. For instance, in the movie data sets we worked with, a node might represent an actor, a director, a film, a film genre, and so on. Edges represented the relationships between entities — acted in, directed, wrote, and so on.

Entity alignment.png
This example illustrates the challenge of entity alignment. IMDB lists the writer of the movie Don’t Stop Dreaming as Aditya Raj, but the (now defunct) Freebase database lists him as Aditya Raj Kapoor. Are they the same person?

Our system is an example of a graph neural network, a type of neural network that has recently become popular for graph-related tasks. To get a sense for how it works, consider the Freebase example above, which includes what we call the “neighborhood” of the node representing Aditya Raj Kapoor. This is a two-hop local graph, meaning that it contains the nodes connected to Kapoor (one hop) and the nodes connected to them (two hops), but it doesn’t fan out any farther through the knowledge graph. The neighborhood thus consists of six nodes.

With a standard graph neural network (GNN), the first step — known as the level-0 step — is to embed each of the nodes, or convert it to a fixed-length vector representation. That representation is intended to capture information about node attributes useful for the network’s task — in this case, entity alignment — and it’s learned during the network’s training.

Next, in the level-1 step, the network considers the central node (here, Aditya Raj Kapoor) and the nodes one hop away from it (Don’t Stop Dreaming and Sambar Salsa). For each of these nodes, it produces a new embedding, which consists of the node's level-0 embedding concatenated with the sum of its immediate neighbors' level-0 embeddings.

At the level-2 step — the final step in a two-hop network — the network produces a new embedding for the central node, which consists of that node’s level-1 embedding concatenated with the summation of the level-1 embeddings of its immediate neighbors.

Graph neural network
A demonstration of how graph neural networks use recursive embedding to condense all the information in a two-hop graph into a single vector. Relationships between entities — such as "produce" and "write" in a movie database (red and yellow arrows, respectively) — are encoded in the level-0 embeddings of the entities themselves (red and orange blocks).
Stacy Reilly

In our example, this process compresses the entire six-node neighborhood graph from the Freebase database into a single vector. It would do the same with the ten-node neighborhood graph from IMDB, and comparing the vectors is the basis for the network’s decision about whether or not the entities at the centers of the graphs — Aditya Raj and Aditya Raj Kapoor — are the same.

This is the standard implementation of the GNN for the entity alignment problem. Unfortunately, in our experiments, it performed terribly. So we made two significant modifications.

The first was a cross-graph attention mechanism. During the level-1 and level-2 aggregation stages, when the network sums the embeddings of each node’s neighbors, it weights those sums based on a comparison with the other graph.

In our example, that means that during the level-1 and level-2 aggregations, the nodes Don’t Stop Dreaming and Sambar Salsa, which show up in both the IMDB and Freebase graphs, will get greater weight than Gawaahi and Shamaal, which show up only in IMDB.

Cross-graph attention.png
In this example, our cross-graph attention mechanism (blue lines) gives added weight (dotted red lines) to the embeddings of entities shared between neighborhood graphs.

The cross-graph attention mechanism thus emphasizes correspondences between the graphs and de-emphasizes differences. After all, the differences between the graphs is why it’s useful to combine their information in the first place.

Radioactive.png
The original version of “Radioactive” and the remix are distinct tracks, but they share so many attributes that a naïve entity alignment system might misclassify them as identical.

This approach has one major problem, however: sometimes the differences between graphs matter more than their correspondences. Consider the example at left, which compares two different versions of Imagine Dragons’ hit “Radioactive”, the original album cut and the remix featuring Kendrick Lamar.

Here, the cross-graph attention mechanism might overweight the many similarities between the two tracks and underweight the key difference: the main performer. So our network also includes a self-attention mechanism.

Self-attention.png
The application of our self-attention mechanism in our running example involving Aditya Raj.

During training, the self-attention mechanism learns which attributes of an entity are most important for distinguishing it from entities that look similar. In this case, it would learn that many distinct recordings may share the same songwriter or songwriters; what distinguishes them is the performer.

These two modifications are chiefly responsible for the improved performance of our model versus the ten baselines we compared it with.

Finally, a quick remark about one of the several techniques we used to increase our model’s computational efficiency. Although, for purposes of entity alignment, we compare two-hop neighborhoods, we don’t necessarily include a given entity’s entire two-hop neighborhood. We impose a cap on the number of nodes included in the neighborhood, and to select nodes for inclusion, we use weighted sampling.

The sample weights have an inverse relationship to the number of neighbor nodes that share the same relationship to the node of interest. So, for instance, a movie might have dozens of actors but only one director. In that case, our method would have a much higher chance of including the director node in our sampled neighborhood than it would of including any given actor node. Restricting the neighborhood size in this way prevents our method’s computational complexity from getting out of hand.

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Are you passionate about leveraging your applied science skills to deliver actionable insights that impact daily business decisions? Do you thrive using causal inference, experimentation, and Machine Learning/AI to answer challenging product and customer behavior questions? Do you want to be a technical leader and build flexible and global solutions for complex financial, risk, and causal problems? If so, here is a great opportunity to consider! Amazon B2B Payments & Lending is seeking a Senior Applied Scientist who will combine their technical expertise with business intuition to generate critical insights that will set the strategic direction of the business. You will be a thought leader on the team, help set the team's strategic focus and roadmaps, and design and build systems/solutions that support financial products, working closely with business/product partners and engineers. You will utilize causal inference/experimentation/ML/AI methodologies, data and coding skills, problem solving and analytical skills, and excellent communication to deliver customer value. As a Senior Applied Scientist on our team, you'll play a pivotal role in uncovering actionable insights that shape the strategic direction of our products and services. You'll work closely with business stakeholders, data scientists, and engineers to tackle complex problems at the intersection of finance, risk modeling, and customer behavior. A day in the life - Collaborate with product, data, and engineering teams to identify key business and customer questions that can be answered through advanced analytics and machine learning - Design and build flexible, scalable solutions that leverage causal inference, experimentation, and applied ML/AI to provide critical insights that drive strategic decisions - Present analyses and recommendations to stakeholders, while also mentoring more junior data scientists and innovating on the team's capabilities About the team The Amazon B2B Payments & Lending team is a fast-paced, highly collaborative group focused on enabling seamless financial experiences for our business customers. We're building innovative solutions that leverage the power of data, AI, and automation to deliver frictionless payment processing, credit decisioning, and financial management tools. Our team culture is one of curiosity, creativity, and a relentless drive to delight our customers. We value bold thinking, data-driven decision making, and a willingness to experiment and learn. If you're passionate about using your technical expertise to drive meaningful business impact, this is an exciting opportunity to make a difference.