Computing on private data

Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Many of today’s most innovative computation-based products and solutions are fueled by data. Where those data are private, it is essential to protect them and to prevent the release of information about data subjects, owners, or users to the wrong parties. How can we perform useful computations on sensitive data while preserving privacy?

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

We will revisit two well-studied approaches to this challenge: secure multiparty computation (MPC) and differential privacy (DP). MPC and DP were invented to address different real-world problems and to achieve different technical goals. However, because they are both aimed at using private information without fully revealing it, they are often confused. To help draw a distinction between the two approaches, we will discuss the power and limitations of both and give typical scenarios in which each can be highly effective.

We are interested in scenarios in which multiple individuals (sometimes, society as a whole) can derive substantial utility from a computation on private data but, in order to preserve privacy, cannot simply share all of their data with each other or with an external party.

Secure multiparty computation

MPC methods allow a group of parties to collectively perform a computation that involves all of their private data while revealing only the result of the computation. More formally, an MPC protocol enables n parties, each of whom possesses a private dataset, to compute a function of the union of their datasets in such a way that the only information revealed by the computation is the output of the function. Common situations in which MPC can be used to protect private interests include

  • auctions: the winning bid amount should be made public, but no information about the losing bids should be revealed;
  • voting: the number of votes cast for each option should be made public but not the vote cast by any one individual;
  • machine learning inference: secure two-party computation enables a client to submit a query to a server that holds a proprietary model and receive a response, keeping the query private from the server and the model private from the client.
Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

Note that the number n of participants can be quite small (e.g., two in the case of machine learning inference), moderate in size, or very large; the latter two size ranges both occur naturally in auctions and votes. Similarly, the participants may be known to each other (as they would be, for example, in a departmental faculty vote) or not (as, for example, in an online auction). MPC protocols mathematically guarantee the secrecy of input values but do not attempt to hide the identities of the participants; if anonymous participation is desired, it can be achieved by combining MPC with an anonymous-communication protocol.

Although MPC may seem like magic, it is implementable and even practical using cryptographic and distributed-computing techniques. For example, suppose that Alice, Bob, Carlos, and David are four engineers who want to compare their annual raises. Alice selects four random numbers that sum to her raise. She keeps one number to herself and gives each of the other three to one of the other engineers. Bob, Carlos, and David do the same with their own raises.

Secure multiparty computation
Four engineers wish to compute their average raise, without revealing any one engineer's raise to the others. Each selects four numbers that sum to his or her raise and sends three of them to the other engineers. Each engineer then sums his or her four numbers — one private number and three received from the others. The sum of all four engineers' sums equals the sum of all four raises.

After everyone has distributed the random numbers, each engineer adds up the numbers he or she is holding and sends the sum to the others. Each engineer adds up these four sums privately (i.e., on his or her local machine) and divides by four to get the average raise. Now they can all compare their raises to the team average.


Amount

Alice’s share

Bob’s share

Carlos’s share

David’s share

Sum of sums

Alice’s raise

3800

-1000

2500

900

1400


Bob’s raise

2514

700

400

650

764


Carlos’s raise

2982

750

-100

832

1500


David’s raise

3390

1500

900

-3000

3990


Sum

12686

1950

3700

-618

7654

12686

Average

3171.5





3171.5

Note that, because Alice (like Bob, Carlos, and David) kept part of her raise private (the bold numbers), no one else learned her actual raise. When she summed the numbers she was holding, the sum didn’t correspond to anyone’s raise. In fact, Bob’s sum was negative, because all that matters is that the four chosen numbers add up to the raise; the sign and magnitude of these four numbers are irrelevant.

Summing all of the engineers’ sums results in the same value as summing the raises directly, namely $12,686. If all of the engineers follow this protocol faithfully, dividing this value by four yields the team average raise of $3,171.50, which allows each person to compare his or her raise against the team average (locally and hence privately) without revealing any salary information.

A highly readable introduction to MPC that emphasizes practical protocols, some of which have been deployed in real-world scenarios, can be found in a monograph by Evans, Kolesnikov, and Rosulek. Examples of real-world applications that have been deployed include analysis of gender-based wage gaps in Boston-area companies, aggregate adoption of cybersecurity measures, and Covid exposure notification. Readers may also wish to read our previous blog post on this and related topics.

Differential privacy

Differential privacy (DP) is a body of statistical and algorithmic techniques for releasing an aggregate function of a dataset without revealing the mapping between data contributors and data items. As in MPC, we have n parties, each of whom possesses a data item. Either the parties themselves or, more often, an external agent wishes to compute an aggregate function of the parties’ input data.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

If this computation is performed in a differentially private manner, then no information that could be inferred from the output about the ith input, xi, can be associated with the individual party Pi. Typically, the number n of participants is very large, the participants are not known to each other, and the goal is to compute a statistical property of the set {x1, …, xn} while protecting the privacy of individual data contributors {P1, …, Pn}.

In slightly more detail, we say that a randomized algorithm M preserves differential privacy with respect to an aggregation function f if it satisfies two properties. First, for every set of input values, the output of M closely approximates the value of f. Second, for every distinct pair (xi, xi') of possible values for the ith individual input, the distribution of M(x1, …, xi,…, xn) is approximately equivalent to the distribution of M(x1, …, xi′, …, xn). The maximum “distance” between the two distributions is characterized by a parameter, ϵ, called the privacy parameter, and M is called an ϵ-differentially private algorithm.

Note that the output of a differentially private algorithm is a random variable drawn from a distribution on the range of the function f. That is because DP computation requires randomization; in particular, it works by “adding noise.” All known DP techniques introduce a salient trade-off between the privacy parameter and the utility of the output of the computation. Smaller values of ϵ produce better privacy guarantees, but they require more noise and hence produce less-accurate outputs; larger values of ϵ yield worse privacy bounds, but they require less noise and hence deliver better accuracy.

For example, consider a poll, the goal of which is to predict who is going to win an election. The pollster and respondents are willing to sacrifice some accuracy in order to improve privacy. Suppose respondents P1, …, Pn have predictions x1, …, xn, respectively, where each xi is either 0 or 1. The poll is supposed to output a good estimate of p, which we use to denote the fraction of the parties who predict 1. The DP framework allows us to compute an accurate estimate and simultaneously to preserve each respondent’s “plausible deniability” about his or her true prediction by requiring each respondent to add noise before sending a response to the pollster.

Related content
Private aggregation of teacher ensembles (PATE) leads to word error rate reductions of more than 26% relative to standard differential-privacy techniques.

We now provide a few more details of the polling example. Consider the algorithm m that takes as input a bit xi and flips a fair coin. If the coin comes up tails, then m outputs xi; otherwise m flips another fair coin and outputs 1 if heads and 0 if tails. This m is known as the randomized response mechanism; when the pollster asks Pi for a prediction, Pi responds with m(xi). Simple statistical calculation shows that, in the set of answers that the pollster receives from the respondents, the expected fraction that are 1’s is

Pr[First coin is tails] ⋅ p + Pr[First coin is heads] ⋅ Pr[Second coin is heads] = p/2 + 1/4.

Thus, the expected number of 1’s received is n(p/2 + 1/4). Let N = m(x1) + ⋅⋅⋅ + m(xn) denote the actual number of 1’s received; we approximate p by M(x1, …, xn) = 2N/n − 1/2. In fact, this approximation algorithm, M, is differentially private. Accuracy follows from the statistical calculation, and privacy follows from the “plausible deniability” provided by the fact that M outputs 1 with probability at least 1/4 regardless of the value of xi.

Differential privacy has dominated the study of privacy-preserving statistical computation since it was introduced in 2006 and is widely regarded as a fundamental breakthrough in both theory and practice. An excellent overview of algorithmic techniques in DP can be found in a monograph by Dwork and Roth. DP has been applied in many real-world applications, most notably the 2020 US Census.

The power and limitations of MPC and DP

We now review some of the strengths and weaknesses of these two approaches and highlight some key differences between them.

Secure multiparty computation

MPC has been extensively studied for more than 40 years, and there are powerful, general results showing that it can be done for all functions f using a variety of cryptographic and coding-theoretic techniques, system models, and adversary models.

Despite the existence of fully general, secure protocols, MPC has seen limited real-world deployment. One obstacle is protocol complexity — particularly the communication complexity of the most powerful, general solutions. Much current work on MPC addresses this issue.

Related content
A privacy-preserving version of the popular XGBoost machine learning algorithm would let customers feel even more secure about uploading sensitive data to the cloud.

More-fundamental questions that must be answered before MPC can be applied in a given scenario include the nature of the function f being computed and the information environment in which the computation is taking place. In order to explain this point, we first note that the set of participants in the MPC computation is not necessarily the same as the set of parties that receive the result of the computation. The two sets may be identical, one may be a proper subset of the other, they may have some (but not all) elements in common, or they may be entirely disjoint.

Although a secure MPC protocol (provably!) reveals nothing to the recipients about the private inputs except what can be inferred from the result, even that may be too much. For example, if the result is the number of votes for and votes against a proposition in a referendum, and the referendum passes unanimously, then the recipients learn exactly how each participant voted. The referendum authority can avoid revealing private information by using a different f, e.g., one that is “YES” if the number of votes for the proposition is at least half the number of participants and “NO” if it is less than half.

This simple example demonstrates a pervasive trade-off in privacy-preserving computation: participants can compute a function that is more informative if they are willing to reveal private information to the recipients in edge cases; they can achieve more privacy in edge cases if they are willing to compute a less informative function.

In addition to specifying the function f carefully, users of MPC must evaluate the information environment in which MPC is to be deployed and, in particular, must avoid the catastrophic loss of privacy that can occur when the recipients combine the result of the computation with auxiliary information. For example, consider the scenario in which the participants are all of the companies in a given commercial sector and metropolitan area, and they wish to use MPC to compute the total dollar loss that they (collectively) experienced in a given year that was attributable to data breaches; in this example, the recipients of the result are the companies themselves.

Related content
Scientists describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.

Suppose further that, during that year, one of the companies suffered a severe breach that was covered in the local media, which identified the company by name and reported an approximate dollar figure for the loss that the company suffered as a result of the breach. If that approximate figure is very close to the total loss imposed by data breaches on all the companies that year, then the participants can conclude that all but one of them were barely affected by data breaches that year.

Note that this potentially sensitive information is not leaked by the MPC protocol, which reveals nothing but the aggregate amount lost (i.e., the value of the function f). Rather, it is inferred by combining the result of the computation with information that was already available to the participants before the computation was done. The same risk that input privacy will be destroyed when results are combined with auxiliary information is posed by any computational method that reveals the exact value of the function f.

Differential privacy

The DP framework provides some elegant, simple mechanisms that can be applied to any function f whose output is a vector of real numbers. Essentially, one can independently perturb or “noise up” each component of f(x) by an appropriately defined random value. The amount of noise that must be added in order to hide the contribution (or, indeed, the participation) of any single data subject is determined by the privacy parameter and the maximum amount by which a single input can change the output of f. We explain one such mechanism in slightly more mathematical detail in the following paragraph.

One can apply the Laplace mechanism with privacy parameter ϵ to a function f, whose outputs are k-tuples of real numbers, by returning the value f(x1, …, xn) + (Y1, …, Yk) on input (x1, …, xn), where the Yi are independent random variables drawn from the Laplace distribution with parameter Δ(f)/ϵ. Here Δ(f) denotes the 1sensitivity of the function f, which captures the magnitude by which a single individual’s data can change the output of f in the worst case. The technical definition of the Laplace distribution is beyond the scope of this article, but for our purposes, its important property is that the Yi can be sampled efficiently.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

Crucially, DP protects data contributors against privacy loss caused by post-processing computational results or by combining results with auxiliary information. The scenario in which privacy loss occurred when the output of an MPC protocol was combined with information from an existing news story could not occur in a DP application; moreover, no harm could be done by combining the result of a DP computation with auxiliary information in a future news story.

DP techniques also benefit from powerful composition theorems that allow separate differentially private algorithms to be combined in one application. In particular, the independent use of an ϵ1-differentially private algorithm and an ϵ2-differentially private algorithm, when taken together, is (ϵ1 + ϵ2)-differentially private.

One limitation on the applicability of DP is the need to add noise — something that may not be tolerable in some application scenarios. More fundamentally, the ℓ1 sensitivity of a function f, which yields an upper bound on the amount of noise that must be added to the output in order to achieve a given privacy parameter ϵ, also yields a lower bound. If the output of f is strongly influenced by the presence of a single outlier in the input, then it is impossible to achieve strong privacy and high accuracy simultaneously.

For example, consider the simple case in which f is the sum of all of the private inputs, and each input is an arbitrary positive integer. It is easy to see that the ℓ1 sensitivity is unbounded in this case; to hide the contribution or the participation of an individual whose data item strongly dominates those of all other individuals would require enough noise to render the output meaningless. If one can restrict all of the private inputs to a small interval [a,b], however, then the Laplace mechanism can provide meaningful privacy and accuracy.

DP was originally designed to compute statistical aggregates while preserving the privacy of individual data subjects; in particular, it was designed with real-valued functions in mind. Since then, researchers have developed DP techniques for non-numerical computations. For example, the exponential mechanism can be used to solve selection problems, in which both input and output are of arbitrary type.

Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

In specifying a selection problem, one must define a scoring function that maps input-output pairs to real numbers. For each input x, a solution y is better than a solution y′ if the score of (x,y) is greater than that of (x,y′). The exponential mechanism generally works well (i.e., achieves good privacy and good accuracy simultaneously) for selection problems (e.g., approval voting) that can be defined by scoring functions of low sensitivity but not for those (e.g., set intersection) in which the scoring function must have high sensitivity. In fact, there is no differentially private algorithm that works well for set intersection; by contrast, MPC for set intersection is a mature and practical technology that has seen real-world deployment.

Conclusion

In conclusion, both secure multiparty computation and differential privacy can be used to perform computations on sensitive data while preserving the privacy of those data. Important differences between the bodies of technique include

  • The nature of the privacy guarantee: Use of MPC to compute a function y = f(x1, x2, ..., xn) guarantees that the recipients of the result learn the output y and nothing more. For example, if there are exactly two input vectors that are mapped to y by f, the recipients of the output y gain no information about which of two was the actual input to the MPC computation, regardless of the number of components in which these two input vectors differ or the magnitude of the differences. On the other hand, for any third input vector that does not map to y, the recipient learns with certainty that the real input to the MPC computation was not this third vector, even if it differs from one of the first two in only one component and only by a very small amount. By contrast, computing f with a DP algorithm guarantees that, for any two input vectors that differ in only one component, the (randomized!) results of the computation are approximately indistinguishable, regardless of whether the exact values of f on these two input vectors are equal, nearly equal, or extremely different. Straightforward use of composition yields a privacy guarantee for inputs that differ in c components at the expense of increasing the privacy parameter by a factor of c.
  • Typical use cases: DP techniques are most often used to compute aggregate properties of very large datasets, and typically, the identities of data contributors are not known. None of these conditions is typical of MPC use cases.
  • Exact vs. noisy answers: MPC can be used to compute exact answers for all functions f. DP requires the addition of noise. This is not a problem in many statistical computations, but even small amounts of noise may not be acceptable in some application scenarios. Moreover, if f is extremely sensitive to outliers in the input data, the amount of noise needed to achieve meaningful privacy may preclude meaningful accuracy.
  • Auxiliary information: Combining the result of a DP computation with auxiliary information cannot result in privacy loss. By contrast, any computational method (including MPC) that returns the exact value y of a function f runs the risk that a recipient of y might be able to infer something about the input data that is not implied by y alone, if y is combined with auxiliary information.

Finally, we would like to point out that, in some applications, it is possible to get the benefits of both MPC and DP. If the goal is to compute f, and g is a differentially private approximation of f that achieves good privacy and accuracy simultaneously, then one natural way to proceed is to use MPC to compute g. We expect to see both MPC and DP used to enhance data privacy in Amazon’s products and services.

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
KR, Seoul
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.