Computing on private data

Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Many of today’s most innovative computation-based products and solutions are fueled by data. Where those data are private, it is essential to protect them and to prevent the release of information about data subjects, owners, or users to the wrong parties. How can we perform useful computations on sensitive data while preserving privacy?

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

We will revisit two well-studied approaches to this challenge: secure multiparty computation (MPC) and differential privacy (DP). MPC and DP were invented to address different real-world problems and to achieve different technical goals. However, because they are both aimed at using private information without fully revealing it, they are often confused. To help draw a distinction between the two approaches, we will discuss the power and limitations of both and give typical scenarios in which each can be highly effective.

We are interested in scenarios in which multiple individuals (sometimes, society as a whole) can derive substantial utility from a computation on private data but, in order to preserve privacy, cannot simply share all of their data with each other or with an external party.

Secure multiparty computation

MPC methods allow a group of parties to collectively perform a computation that involves all of their private data while revealing only the result of the computation. More formally, an MPC protocol enables n parties, each of whom possesses a private dataset, to compute a function of the union of their datasets in such a way that the only information revealed by the computation is the output of the function. Common situations in which MPC can be used to protect private interests include

  • auctions: the winning bid amount should be made public, but no information about the losing bids should be revealed;
  • voting: the number of votes cast for each option should be made public but not the vote cast by any one individual;
  • machine learning inference: secure two-party computation enables a client to submit a query to a server that holds a proprietary model and receive a response, keeping the query private from the server and the model private from the client.
Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

Note that the number n of participants can be quite small (e.g., two in the case of machine learning inference), moderate in size, or very large; the latter two size ranges both occur naturally in auctions and votes. Similarly, the participants may be known to each other (as they would be, for example, in a departmental faculty vote) or not (as, for example, in an online auction). MPC protocols mathematically guarantee the secrecy of input values but do not attempt to hide the identities of the participants; if anonymous participation is desired, it can be achieved by combining MPC with an anonymous-communication protocol.

Although MPC may seem like magic, it is implementable and even practical using cryptographic and distributed-computing techniques. For example, suppose that Alice, Bob, Carlos, and David are four engineers who want to compare their annual raises. Alice selects four random numbers that sum to her raise. She keeps one number to herself and gives each of the other three to one of the other engineers. Bob, Carlos, and David do the same with their own raises.

Secure multiparty computation
Four engineers wish to compute their average raise, without revealing any one engineer's raise to the others. Each selects four numbers that sum to his or her raise and sends three of them to the other engineers. Each engineer then sums his or her four numbers — one private number and three received from the others. The sum of all four engineers' sums equals the sum of all four raises.

After everyone has distributed the random numbers, each engineer adds up the numbers he or she is holding and sends the sum to the others. Each engineer adds up these four sums privately (i.e., on his or her local machine) and divides by four to get the average raise. Now they can all compare their raises to the team average.


Amount

Alice’s share

Bob’s share

Carlos’s share

David’s share

Sum of sums

Alice’s raise

3800

-1000

2500

900

1400


Bob’s raise

2514

700

400

650

764


Carlos’s raise

2982

750

-100

832

1500


David’s raise

3390

1500

900

-3000

3990


Sum

12686

1950

3700

-618

7654

12686

Average

3171.5





3171.5

Note that, because Alice (like Bob, Carlos, and David) kept part of her raise private (the bold numbers), no one else learned her actual raise. When she summed the numbers she was holding, the sum didn’t correspond to anyone’s raise. In fact, Bob’s sum was negative, because all that matters is that the four chosen numbers add up to the raise; the sign and magnitude of these four numbers are irrelevant.

Summing all of the engineers’ sums results in the same value as summing the raises directly, namely $12,686. If all of the engineers follow this protocol faithfully, dividing this value by four yields the team average raise of $3,171.50, which allows each person to compare his or her raise against the team average (locally and hence privately) without revealing any salary information.

A highly readable introduction to MPC that emphasizes practical protocols, some of which have been deployed in real-world scenarios, can be found in a monograph by Evans, Kolesnikov, and Rosulek. Examples of real-world applications that have been deployed include analysis of gender-based wage gaps in Boston-area companies, aggregate adoption of cybersecurity measures, and Covid exposure notification. Readers may also wish to read our previous blog post on this and related topics.

Differential privacy

Differential privacy (DP) is a body of statistical and algorithmic techniques for releasing an aggregate function of a dataset without revealing the mapping between data contributors and data items. As in MPC, we have n parties, each of whom possesses a data item. Either the parties themselves or, more often, an external agent wishes to compute an aggregate function of the parties’ input data.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

If this computation is performed in a differentially private manner, then no information that could be inferred from the output about the ith input, xi, can be associated with the individual party Pi. Typically, the number n of participants is very large, the participants are not known to each other, and the goal is to compute a statistical property of the set {x1, …, xn} while protecting the privacy of individual data contributors {P1, …, Pn}.

In slightly more detail, we say that a randomized algorithm M preserves differential privacy with respect to an aggregation function f if it satisfies two properties. First, for every set of input values, the output of M closely approximates the value of f. Second, for every distinct pair (xi, xi') of possible values for the ith individual input, the distribution of M(x1, …, xi,…, xn) is approximately equivalent to the distribution of M(x1, …, xi′, …, xn). The maximum “distance” between the two distributions is characterized by a parameter, ϵ, called the privacy parameter, and M is called an ϵ-differentially private algorithm.

Note that the output of a differentially private algorithm is a random variable drawn from a distribution on the range of the function f. That is because DP computation requires randomization; in particular, it works by “adding noise.” All known DP techniques introduce a salient trade-off between the privacy parameter and the utility of the output of the computation. Smaller values of ϵ produce better privacy guarantees, but they require more noise and hence produce less-accurate outputs; larger values of ϵ yield worse privacy bounds, but they require less noise and hence deliver better accuracy.

For example, consider a poll, the goal of which is to predict who is going to win an election. The pollster and respondents are willing to sacrifice some accuracy in order to improve privacy. Suppose respondents P1, …, Pn have predictions x1, …, xn, respectively, where each xi is either 0 or 1. The poll is supposed to output a good estimate of p, which we use to denote the fraction of the parties who predict 1. The DP framework allows us to compute an accurate estimate and simultaneously to preserve each respondent’s “plausible deniability” about his or her true prediction by requiring each respondent to add noise before sending a response to the pollster.

Related content
Private aggregation of teacher ensembles (PATE) leads to word error rate reductions of more than 26% relative to standard differential-privacy techniques.

We now provide a few more details of the polling example. Consider the algorithm m that takes as input a bit xi and flips a fair coin. If the coin comes up tails, then m outputs xi; otherwise m flips another fair coin and outputs 1 if heads and 0 if tails. This m is known as the randomized response mechanism; when the pollster asks Pi for a prediction, Pi responds with m(xi). Simple statistical calculation shows that, in the set of answers that the pollster receives from the respondents, the expected fraction that are 1’s is

Pr[First coin is tails] ⋅ p + Pr[First coin is heads] ⋅ Pr[Second coin is heads] = p/2 + 1/4.

Thus, the expected number of 1’s received is n(p/2 + 1/4). Let N = m(x1) + ⋅⋅⋅ + m(xn) denote the actual number of 1’s received; we approximate p by M(x1, …, xn) = 2N/n − 1/2. In fact, this approximation algorithm, M, is differentially private. Accuracy follows from the statistical calculation, and privacy follows from the “plausible deniability” provided by the fact that M outputs 1 with probability at least 1/4 regardless of the value of xi.

Differential privacy has dominated the study of privacy-preserving statistical computation since it was introduced in 2006 and is widely regarded as a fundamental breakthrough in both theory and practice. An excellent overview of algorithmic techniques in DP can be found in a monograph by Dwork and Roth. DP has been applied in many real-world applications, most notably the 2020 US Census.

The power and limitations of MPC and DP

We now review some of the strengths and weaknesses of these two approaches and highlight some key differences between them.

Secure multiparty computation

MPC has been extensively studied for more than 40 years, and there are powerful, general results showing that it can be done for all functions f using a variety of cryptographic and coding-theoretic techniques, system models, and adversary models.

Despite the existence of fully general, secure protocols, MPC has seen limited real-world deployment. One obstacle is protocol complexity — particularly the communication complexity of the most powerful, general solutions. Much current work on MPC addresses this issue.

Related content
A privacy-preserving version of the popular XGBoost machine learning algorithm would let customers feel even more secure about uploading sensitive data to the cloud.

More-fundamental questions that must be answered before MPC can be applied in a given scenario include the nature of the function f being computed and the information environment in which the computation is taking place. In order to explain this point, we first note that the set of participants in the MPC computation is not necessarily the same as the set of parties that receive the result of the computation. The two sets may be identical, one may be a proper subset of the other, they may have some (but not all) elements in common, or they may be entirely disjoint.

Although a secure MPC protocol (provably!) reveals nothing to the recipients about the private inputs except what can be inferred from the result, even that may be too much. For example, if the result is the number of votes for and votes against a proposition in a referendum, and the referendum passes unanimously, then the recipients learn exactly how each participant voted. The referendum authority can avoid revealing private information by using a different f, e.g., one that is “YES” if the number of votes for the proposition is at least half the number of participants and “NO” if it is less than half.

This simple example demonstrates a pervasive trade-off in privacy-preserving computation: participants can compute a function that is more informative if they are willing to reveal private information to the recipients in edge cases; they can achieve more privacy in edge cases if they are willing to compute a less informative function.

In addition to specifying the function f carefully, users of MPC must evaluate the information environment in which MPC is to be deployed and, in particular, must avoid the catastrophic loss of privacy that can occur when the recipients combine the result of the computation with auxiliary information. For example, consider the scenario in which the participants are all of the companies in a given commercial sector and metropolitan area, and they wish to use MPC to compute the total dollar loss that they (collectively) experienced in a given year that was attributable to data breaches; in this example, the recipients of the result are the companies themselves.

Related content
Scientists describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.

Suppose further that, during that year, one of the companies suffered a severe breach that was covered in the local media, which identified the company by name and reported an approximate dollar figure for the loss that the company suffered as a result of the breach. If that approximate figure is very close to the total loss imposed by data breaches on all the companies that year, then the participants can conclude that all but one of them were barely affected by data breaches that year.

Note that this potentially sensitive information is not leaked by the MPC protocol, which reveals nothing but the aggregate amount lost (i.e., the value of the function f). Rather, it is inferred by combining the result of the computation with information that was already available to the participants before the computation was done. The same risk that input privacy will be destroyed when results are combined with auxiliary information is posed by any computational method that reveals the exact value of the function f.

Differential privacy

The DP framework provides some elegant, simple mechanisms that can be applied to any function f whose output is a vector of real numbers. Essentially, one can independently perturb or “noise up” each component of f(x) by an appropriately defined random value. The amount of noise that must be added in order to hide the contribution (or, indeed, the participation) of any single data subject is determined by the privacy parameter and the maximum amount by which a single input can change the output of f. We explain one such mechanism in slightly more mathematical detail in the following paragraph.

One can apply the Laplace mechanism with privacy parameter ϵ to a function f, whose outputs are k-tuples of real numbers, by returning the value f(x1, …, xn) + (Y1, …, Yk) on input (x1, …, xn), where the Yi are independent random variables drawn from the Laplace distribution with parameter Δ(f)/ϵ. Here Δ(f) denotes the 1sensitivity of the function f, which captures the magnitude by which a single individual’s data can change the output of f in the worst case. The technical definition of the Laplace distribution is beyond the scope of this article, but for our purposes, its important property is that the Yi can be sampled efficiently.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

Crucially, DP protects data contributors against privacy loss caused by post-processing computational results or by combining results with auxiliary information. The scenario in which privacy loss occurred when the output of an MPC protocol was combined with information from an existing news story could not occur in a DP application; moreover, no harm could be done by combining the result of a DP computation with auxiliary information in a future news story.

DP techniques also benefit from powerful composition theorems that allow separate differentially private algorithms to be combined in one application. In particular, the independent use of an ϵ1-differentially private algorithm and an ϵ2-differentially private algorithm, when taken together, is (ϵ1 + ϵ2)-differentially private.

One limitation on the applicability of DP is the need to add noise — something that may not be tolerable in some application scenarios. More fundamentally, the ℓ1 sensitivity of a function f, which yields an upper bound on the amount of noise that must be added to the output in order to achieve a given privacy parameter ϵ, also yields a lower bound. If the output of f is strongly influenced by the presence of a single outlier in the input, then it is impossible to achieve strong privacy and high accuracy simultaneously.

For example, consider the simple case in which f is the sum of all of the private inputs, and each input is an arbitrary positive integer. It is easy to see that the ℓ1 sensitivity is unbounded in this case; to hide the contribution or the participation of an individual whose data item strongly dominates those of all other individuals would require enough noise to render the output meaningless. If one can restrict all of the private inputs to a small interval [a,b], however, then the Laplace mechanism can provide meaningful privacy and accuracy.

DP was originally designed to compute statistical aggregates while preserving the privacy of individual data subjects; in particular, it was designed with real-valued functions in mind. Since then, researchers have developed DP techniques for non-numerical computations. For example, the exponential mechanism can be used to solve selection problems, in which both input and output are of arbitrary type.

Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

In specifying a selection problem, one must define a scoring function that maps input-output pairs to real numbers. For each input x, a solution y is better than a solution y′ if the score of (x,y) is greater than that of (x,y′). The exponential mechanism generally works well (i.e., achieves good privacy and good accuracy simultaneously) for selection problems (e.g., approval voting) that can be defined by scoring functions of low sensitivity but not for those (e.g., set intersection) in which the scoring function must have high sensitivity. In fact, there is no differentially private algorithm that works well for set intersection; by contrast, MPC for set intersection is a mature and practical technology that has seen real-world deployment.

Conclusion

In conclusion, both secure multiparty computation and differential privacy can be used to perform computations on sensitive data while preserving the privacy of those data. Important differences between the bodies of technique include

  • The nature of the privacy guarantee: Use of MPC to compute a function y = f(x1, x2, ..., xn) guarantees that the recipients of the result learn the output y and nothing more. For example, if there are exactly two input vectors that are mapped to y by f, the recipients of the output y gain no information about which of two was the actual input to the MPC computation, regardless of the number of components in which these two input vectors differ or the magnitude of the differences. On the other hand, for any third input vector that does not map to y, the recipient learns with certainty that the real input to the MPC computation was not this third vector, even if it differs from one of the first two in only one component and only by a very small amount. By contrast, computing f with a DP algorithm guarantees that, for any two input vectors that differ in only one component, the (randomized!) results of the computation are approximately indistinguishable, regardless of whether the exact values of f on these two input vectors are equal, nearly equal, or extremely different. Straightforward use of composition yields a privacy guarantee for inputs that differ in c components at the expense of increasing the privacy parameter by a factor of c.
  • Typical use cases: DP techniques are most often used to compute aggregate properties of very large datasets, and typically, the identities of data contributors are not known. None of these conditions is typical of MPC use cases.
  • Exact vs. noisy answers: MPC can be used to compute exact answers for all functions f. DP requires the addition of noise. This is not a problem in many statistical computations, but even small amounts of noise may not be acceptable in some application scenarios. Moreover, if f is extremely sensitive to outliers in the input data, the amount of noise needed to achieve meaningful privacy may preclude meaningful accuracy.
  • Auxiliary information: Combining the result of a DP computation with auxiliary information cannot result in privacy loss. By contrast, any computational method (including MPC) that returns the exact value y of a function f runs the risk that a recipient of y might be able to infer something about the input data that is not implied by y alone, if y is combined with auxiliary information.

Finally, we would like to point out that, in some applications, it is possible to get the benefits of both MPC and DP. If the goal is to compute f, and g is a differentially private approximation of f that achieves good privacy and accuracy simultaneously, then one natural way to proceed is to use MPC to compute g. We expect to see both MPC and DP used to enhance data privacy in Amazon’s products and services.

Related content

US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD students with a passion for robotic research and applications to join us as Robotics Research Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Research Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 8am-5pm. Specific team norms around working hours will be communicated by your manager. Interns should not have conflicts such as classes or other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role. About the team The Personal Robotics Group is pioneering intelligent robotic products that deliver meaningful customer experiences. We're the team behind Amazon Astro, and we're building the next generation of robotic systems that will redefine how customers interact with technology. Our work spans the full spectrum from advanced hardware design to sophisticated software and control systems, combining mechanical innovation, software engineering, dynamic systems modeling, and intelligent algorithms to create robots that are not just functional, but delightful. This is a unique opportunity to shape the future of personal robotics working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Join us if you're passionate about creating the future of personal robotics, solving complex challenges at the intersection of hardware and software, and seeing your innovations deliver transformative customer experiences.