Computing on private data

Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Many of today’s most innovative computation-based products and solutions are fueled by data. Where those data are private, it is essential to protect them and to prevent the release of information about data subjects, owners, or users to the wrong parties. How can we perform useful computations on sensitive data while preserving privacy?

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

We will revisit two well-studied approaches to this challenge: secure multiparty computation (MPC) and differential privacy (DP). MPC and DP were invented to address different real-world problems and to achieve different technical goals. However, because they are both aimed at using private information without fully revealing it, they are often confused. To help draw a distinction between the two approaches, we will discuss the power and limitations of both and give typical scenarios in which each can be highly effective.

We are interested in scenarios in which multiple individuals (sometimes, society as a whole) can derive substantial utility from a computation on private data but, in order to preserve privacy, cannot simply share all of their data with each other or with an external party.

Secure multiparty computation

MPC methods allow a group of parties to collectively perform a computation that involves all of their private data while revealing only the result of the computation. More formally, an MPC protocol enables n parties, each of whom possesses a private dataset, to compute a function of the union of their datasets in such a way that the only information revealed by the computation is the output of the function. Common situations in which MPC can be used to protect private interests include

  • auctions: the winning bid amount should be made public, but no information about the losing bids should be revealed;
  • voting: the number of votes cast for each option should be made public but not the vote cast by any one individual;
  • machine learning inference: secure two-party computation enables a client to submit a query to a server that holds a proprietary model and receive a response, keeping the query private from the server and the model private from the client.
Related content
New approach to homomorphic encryption speeds up the training of encrypted machine learning models sixfold.

Note that the number n of participants can be quite small (e.g., two in the case of machine learning inference), moderate in size, or very large; the latter two size ranges both occur naturally in auctions and votes. Similarly, the participants may be known to each other (as they would be, for example, in a departmental faculty vote) or not (as, for example, in an online auction). MPC protocols mathematically guarantee the secrecy of input values but do not attempt to hide the identities of the participants; if anonymous participation is desired, it can be achieved by combining MPC with an anonymous-communication protocol.

Although MPC may seem like magic, it is implementable and even practical using cryptographic and distributed-computing techniques. For example, suppose that Alice, Bob, Carlos, and David are four engineers who want to compare their annual raises. Alice selects four random numbers that sum to her raise. She keeps one number to herself and gives each of the other three to one of the other engineers. Bob, Carlos, and David do the same with their own raises.

Secure multiparty computation
Four engineers wish to compute their average raise, without revealing any one engineer's raise to the others. Each selects four numbers that sum to his or her raise and sends three of them to the other engineers. Each engineer then sums his or her four numbers — one private number and three received from the others. The sum of all four engineers' sums equals the sum of all four raises.

After everyone has distributed the random numbers, each engineer adds up the numbers he or she is holding and sends the sum to the others. Each engineer adds up these four sums privately (i.e., on his or her local machine) and divides by four to get the average raise. Now they can all compare their raises to the team average.


Amount

Alice’s share

Bob’s share

Carlos’s share

David’s share

Sum of sums

Alice’s raise

3800

-1000

2500

900

1400


Bob’s raise

2514

700

400

650

764


Carlos’s raise

2982

750

-100

832

1500


David’s raise

3390

1500

900

-3000

3990


Sum

12686

1950

3700

-618

7654

12686

Average

3171.5





3171.5

Note that, because Alice (like Bob, Carlos, and David) kept part of her raise private (the bold numbers), no one else learned her actual raise. When she summed the numbers she was holding, the sum didn’t correspond to anyone’s raise. In fact, Bob’s sum was negative, because all that matters is that the four chosen numbers add up to the raise; the sign and magnitude of these four numbers are irrelevant.

Summing all of the engineers’ sums results in the same value as summing the raises directly, namely $12,686. If all of the engineers follow this protocol faithfully, dividing this value by four yields the team average raise of $3,171.50, which allows each person to compare his or her raise against the team average (locally and hence privately) without revealing any salary information.

A highly readable introduction to MPC that emphasizes practical protocols, some of which have been deployed in real-world scenarios, can be found in a monograph by Evans, Kolesnikov, and Rosulek. Examples of real-world applications that have been deployed include analysis of gender-based wage gaps in Boston-area companies, aggregate adoption of cybersecurity measures, and Covid exposure notification. Readers may also wish to read our previous blog post on this and related topics.

Differential privacy

Differential privacy (DP) is a body of statistical and algorithmic techniques for releasing an aggregate function of a dataset without revealing the mapping between data contributors and data items. As in MPC, we have n parties, each of whom possesses a data item. Either the parties themselves or, more often, an external agent wishes to compute an aggregate function of the parties’ input data.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

If this computation is performed in a differentially private manner, then no information that could be inferred from the output about the ith input, xi, can be associated with the individual party Pi. Typically, the number n of participants is very large, the participants are not known to each other, and the goal is to compute a statistical property of the set {x1, …, xn} while protecting the privacy of individual data contributors {P1, …, Pn}.

In slightly more detail, we say that a randomized algorithm M preserves differential privacy with respect to an aggregation function f if it satisfies two properties. First, for every set of input values, the output of M closely approximates the value of f. Second, for every distinct pair (xi, xi') of possible values for the ith individual input, the distribution of M(x1, …, xi,…, xn) is approximately equivalent to the distribution of M(x1, …, xi′, …, xn). The maximum “distance” between the two distributions is characterized by a parameter, ϵ, called the privacy parameter, and M is called an ϵ-differentially private algorithm.

Note that the output of a differentially private algorithm is a random variable drawn from a distribution on the range of the function f. That is because DP computation requires randomization; in particular, it works by “adding noise.” All known DP techniques introduce a salient trade-off between the privacy parameter and the utility of the output of the computation. Smaller values of ϵ produce better privacy guarantees, but they require more noise and hence produce less-accurate outputs; larger values of ϵ yield worse privacy bounds, but they require less noise and hence deliver better accuracy.

For example, consider a poll, the goal of which is to predict who is going to win an election. The pollster and respondents are willing to sacrifice some accuracy in order to improve privacy. Suppose respondents P1, …, Pn have predictions x1, …, xn, respectively, where each xi is either 0 or 1. The poll is supposed to output a good estimate of p, which we use to denote the fraction of the parties who predict 1. The DP framework allows us to compute an accurate estimate and simultaneously to preserve each respondent’s “plausible deniability” about his or her true prediction by requiring each respondent to add noise before sending a response to the pollster.

Related content
Private aggregation of teacher ensembles (PATE) leads to word error rate reductions of more than 26% relative to standard differential-privacy techniques.

We now provide a few more details of the polling example. Consider the algorithm m that takes as input a bit xi and flips a fair coin. If the coin comes up tails, then m outputs xi; otherwise m flips another fair coin and outputs 1 if heads and 0 if tails. This m is known as the randomized response mechanism; when the pollster asks Pi for a prediction, Pi responds with m(xi). Simple statistical calculation shows that, in the set of answers that the pollster receives from the respondents, the expected fraction that are 1’s is

Pr[First coin is tails] ⋅ p + Pr[First coin is heads] ⋅ Pr[Second coin is heads] = p/2 + 1/4.

Thus, the expected number of 1’s received is n(p/2 + 1/4). Let N = m(x1) + ⋅⋅⋅ + m(xn) denote the actual number of 1’s received; we approximate p by M(x1, …, xn) = 2N/n − 1/2. In fact, this approximation algorithm, M, is differentially private. Accuracy follows from the statistical calculation, and privacy follows from the “plausible deniability” provided by the fact that M outputs 1 with probability at least 1/4 regardless of the value of xi.

Differential privacy has dominated the study of privacy-preserving statistical computation since it was introduced in 2006 and is widely regarded as a fundamental breakthrough in both theory and practice. An excellent overview of algorithmic techniques in DP can be found in a monograph by Dwork and Roth. DP has been applied in many real-world applications, most notably the 2020 US Census.

The power and limitations of MPC and DP

We now review some of the strengths and weaknesses of these two approaches and highlight some key differences between them.

Secure multiparty computation

MPC has been extensively studied for more than 40 years, and there are powerful, general results showing that it can be done for all functions f using a variety of cryptographic and coding-theoretic techniques, system models, and adversary models.

Despite the existence of fully general, secure protocols, MPC has seen limited real-world deployment. One obstacle is protocol complexity — particularly the communication complexity of the most powerful, general solutions. Much current work on MPC addresses this issue.

Related content
A privacy-preserving version of the popular XGBoost machine learning algorithm would let customers feel even more secure about uploading sensitive data to the cloud.

More-fundamental questions that must be answered before MPC can be applied in a given scenario include the nature of the function f being computed and the information environment in which the computation is taking place. In order to explain this point, we first note that the set of participants in the MPC computation is not necessarily the same as the set of parties that receive the result of the computation. The two sets may be identical, one may be a proper subset of the other, they may have some (but not all) elements in common, or they may be entirely disjoint.

Although a secure MPC protocol (provably!) reveals nothing to the recipients about the private inputs except what can be inferred from the result, even that may be too much. For example, if the result is the number of votes for and votes against a proposition in a referendum, and the referendum passes unanimously, then the recipients learn exactly how each participant voted. The referendum authority can avoid revealing private information by using a different f, e.g., one that is “YES” if the number of votes for the proposition is at least half the number of participants and “NO” if it is less than half.

This simple example demonstrates a pervasive trade-off in privacy-preserving computation: participants can compute a function that is more informative if they are willing to reveal private information to the recipients in edge cases; they can achieve more privacy in edge cases if they are willing to compute a less informative function.

In addition to specifying the function f carefully, users of MPC must evaluate the information environment in which MPC is to be deployed and, in particular, must avoid the catastrophic loss of privacy that can occur when the recipients combine the result of the computation with auxiliary information. For example, consider the scenario in which the participants are all of the companies in a given commercial sector and metropolitan area, and they wish to use MPC to compute the total dollar loss that they (collectively) experienced in a given year that was attributable to data breaches; in this example, the recipients of the result are the companies themselves.

Related content
Scientists describe the use of privacy-preserving machine learning to address privacy challenges in XGBoost training and prediction.

Suppose further that, during that year, one of the companies suffered a severe breach that was covered in the local media, which identified the company by name and reported an approximate dollar figure for the loss that the company suffered as a result of the breach. If that approximate figure is very close to the total loss imposed by data breaches on all the companies that year, then the participants can conclude that all but one of them were barely affected by data breaches that year.

Note that this potentially sensitive information is not leaked by the MPC protocol, which reveals nothing but the aggregate amount lost (i.e., the value of the function f). Rather, it is inferred by combining the result of the computation with information that was already available to the participants before the computation was done. The same risk that input privacy will be destroyed when results are combined with auxiliary information is posed by any computational method that reveals the exact value of the function f.

Differential privacy

The DP framework provides some elegant, simple mechanisms that can be applied to any function f whose output is a vector of real numbers. Essentially, one can independently perturb or “noise up” each component of f(x) by an appropriately defined random value. The amount of noise that must be added in order to hide the contribution (or, indeed, the participation) of any single data subject is determined by the privacy parameter and the maximum amount by which a single input can change the output of f. We explain one such mechanism in slightly more mathematical detail in the following paragraph.

One can apply the Laplace mechanism with privacy parameter ϵ to a function f, whose outputs are k-tuples of real numbers, by returning the value f(x1, …, xn) + (Y1, …, Yk) on input (x1, …, xn), where the Yi are independent random variables drawn from the Laplace distribution with parameter Δ(f)/ϵ. Here Δ(f) denotes the 1sensitivity of the function f, which captures the magnitude by which a single individual’s data can change the output of f in the worst case. The technical definition of the Laplace distribution is beyond the scope of this article, but for our purposes, its important property is that the Yi can be sampled efficiently.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

Crucially, DP protects data contributors against privacy loss caused by post-processing computational results or by combining results with auxiliary information. The scenario in which privacy loss occurred when the output of an MPC protocol was combined with information from an existing news story could not occur in a DP application; moreover, no harm could be done by combining the result of a DP computation with auxiliary information in a future news story.

DP techniques also benefit from powerful composition theorems that allow separate differentially private algorithms to be combined in one application. In particular, the independent use of an ϵ1-differentially private algorithm and an ϵ2-differentially private algorithm, when taken together, is (ϵ1 + ϵ2)-differentially private.

One limitation on the applicability of DP is the need to add noise — something that may not be tolerable in some application scenarios. More fundamentally, the ℓ1 sensitivity of a function f, which yields an upper bound on the amount of noise that must be added to the output in order to achieve a given privacy parameter ϵ, also yields a lower bound. If the output of f is strongly influenced by the presence of a single outlier in the input, then it is impossible to achieve strong privacy and high accuracy simultaneously.

For example, consider the simple case in which f is the sum of all of the private inputs, and each input is an arbitrary positive integer. It is easy to see that the ℓ1 sensitivity is unbounded in this case; to hide the contribution or the participation of an individual whose data item strongly dominates those of all other individuals would require enough noise to render the output meaningless. If one can restrict all of the private inputs to a small interval [a,b], however, then the Laplace mechanism can provide meaningful privacy and accuracy.

DP was originally designed to compute statistical aggregates while preserving the privacy of individual data subjects; in particular, it was designed with real-valued functions in mind. Since then, researchers have developed DP techniques for non-numerical computations. For example, the exponential mechanism can be used to solve selection problems, in which both input and output are of arbitrary type.

Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

In specifying a selection problem, one must define a scoring function that maps input-output pairs to real numbers. For each input x, a solution y is better than a solution y′ if the score of (x,y) is greater than that of (x,y′). The exponential mechanism generally works well (i.e., achieves good privacy and good accuracy simultaneously) for selection problems (e.g., approval voting) that can be defined by scoring functions of low sensitivity but not for those (e.g., set intersection) in which the scoring function must have high sensitivity. In fact, there is no differentially private algorithm that works well for set intersection; by contrast, MPC for set intersection is a mature and practical technology that has seen real-world deployment.

Conclusion

In conclusion, both secure multiparty computation and differential privacy can be used to perform computations on sensitive data while preserving the privacy of those data. Important differences between the bodies of technique include

  • The nature of the privacy guarantee: Use of MPC to compute a function y = f(x1, x2, ..., xn) guarantees that the recipients of the result learn the output y and nothing more. For example, if there are exactly two input vectors that are mapped to y by f, the recipients of the output y gain no information about which of two was the actual input to the MPC computation, regardless of the number of components in which these two input vectors differ or the magnitude of the differences. On the other hand, for any third input vector that does not map to y, the recipient learns with certainty that the real input to the MPC computation was not this third vector, even if it differs from one of the first two in only one component and only by a very small amount. By contrast, computing f with a DP algorithm guarantees that, for any two input vectors that differ in only one component, the (randomized!) results of the computation are approximately indistinguishable, regardless of whether the exact values of f on these two input vectors are equal, nearly equal, or extremely different. Straightforward use of composition yields a privacy guarantee for inputs that differ in c components at the expense of increasing the privacy parameter by a factor of c.
  • Typical use cases: DP techniques are most often used to compute aggregate properties of very large datasets, and typically, the identities of data contributors are not known. None of these conditions is typical of MPC use cases.
  • Exact vs. noisy answers: MPC can be used to compute exact answers for all functions f. DP requires the addition of noise. This is not a problem in many statistical computations, but even small amounts of noise may not be acceptable in some application scenarios. Moreover, if f is extremely sensitive to outliers in the input data, the amount of noise needed to achieve meaningful privacy may preclude meaningful accuracy.
  • Auxiliary information: Combining the result of a DP computation with auxiliary information cannot result in privacy loss. By contrast, any computational method (including MPC) that returns the exact value y of a function f runs the risk that a recipient of y might be able to infer something about the input data that is not implied by y alone, if y is combined with auxiliary information.

Finally, we would like to point out that, in some applications, it is possible to get the benefits of both MPC and DP. If the goal is to compute f, and g is a differentially private approximation of f that achieves good privacy and accuracy simultaneously, then one natural way to proceed is to use MPC to compute g. We expect to see both MPC and DP used to enhance data privacy in Amazon’s products and services.

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).