Latency from post-quantum cryptography shrinks as data increases

Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

The risk that a quantum computer might break cryptographic standards widely used today has ignited numerous efforts to standardize quantum-resistant algorithms and introduce them into transport encryption protocols like TLS 1.3. The choice of post-quantum algorithm will naturally affect TLS 1.3’s performance. So far, studies of those effects have focused on the “handshake time” required for two parties to establish a quantum-resistant encrypted connection, known as the time to first byte.

Although these studies have been important in quantifying increases in handshake time, they do not provide a full picture of the effect of post-quantum cryptography on real-world TLS 1.3 connections, which often carry sizable amounts of data. At the 2024 Workshop on Measurements, Attacks, and Defenses for the Web (MADweb), we presented a paper advocating time to last byte (TTLB) as a metric for assessing the total impact of data-heavy, quantum-resistant algorithms such as ML-KEM and ML-DSA on real-world TLS 1.3 connections. Our paper shows that the new algorithms will have a much lower net effect on connections that transfer sizable amounts of data than they do on the TLS 1.3 handshake itself.

Post-quantum cryptography

TLS 1.3, the latest version of the transport layer security protocol, is used to negotiate and establish secure channels that encrypt and authenticate data passing between a client and a server. TLS 1.3 is used in numerous Web applications, including e-banking and streaming media.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

Asymmetric cryptographic algorithms, such as the one used in TLS 1.3, depend for their security on the difficulty of the discrete-logarithm or integer factorization problems, which a cryptanalytically relevant quantum computer could solve efficiently. The US National Institute of Standards and Technology (NIST) has been working on standardizing quantum-resistant algorithms and has selected ML-Key Encapsulation Mechanism (KEM) for key exchange. NIST has also selected ML-DSA for signatures, or cryptographic authentication.

As these algorithms have kilobyte-size public keys, ciphertexts, and signatures — versus the 50- to 400-byte sizes of the existing algorithms — they would inflate the amount of data exchanged in a TLS handshake. A number of works have compared handshake time using traditional TLS 1.3 key exchange and authentication to that using post-quantum (PQ) key exchange and authentication.

These comparisons were useful to quantify the overhead that each new algorithm introduces to the time to first byte, or completion of the handshake protocol. But they ignored the data transfer time over the secure connection that, together with the handshake time, constitutes the total delay before the application can start processing data. The total time from the start of the connection to the end of data transfer is, by contrast, the time to last byte (TTLB). How much TTLB slowdown is acceptable depends highly on the application.

Experiments

We designed our experiments to simulate various network conditions and measured the TTLB of classical and post-quantum algorithms in TLS 1.3 connections where the client makes a small request and the server responds with hundreds of kilobytes (KB) of data. We used Linux namespaces in a Ubuntu 22.04 virtual-machine instance. The namespaces were interconnected using virtual ethernet interfaces. To emulate the “network” between the namespaces, we used the Linux kernel’s netem utility, which can introduce variable network delays, bandwidth fluctuations, and packet loss between the client and server.

A standard AWS EC2 instance icon (which looks like a stylized integrated circuit) in which a netem emulation is running, with an emulated cloud server (represented by cloud icon) passing data back and forth with a server namespace (represented by a server-stack icon) and a client namespace (represented by a desktop-computer icon).
The experimental setup, with client and server Linux namespaces and netem-emulated network conditions.

Our experiments had several configurable parameters that allowed us to compare the effect of the PQ algorithm on TTLB under stable, unstable, fast, and slow network conditions:

  • TLS key exchange mechanism (classical ECDH or ECDH+ML-KEM post-quantum hybrid)
  • TLS certificate chain size corresponding to classical RSA or ML-DSA certificates.
  • TCP initial congestion window (initcwnd)
  • Network delay between client and server, or round-trip time (RTT)
  • Bandwidth between client and server
  • Loss probability per packet
  • Amount of data transferred from the server to the client

Results

The results of our testing are thoroughly analyzed in the paper. They essentially show that a few extra KB in the TLS 1.3 handshake due to the post-quantum public keys, ciphertexts, and signatures will not be noticeable in connections transferring hundreds of KB or more. Connections that transfer less than 10-20 KB of data will probably be more affected by the new data-heavy handshakes.

PQTLS fig. 1.png
Figure 1: Percentage increase in TLS 1.3 handshake time between traditional and post-quantum TLS 1.3 connections. Bandwidth = 1Mbps; loss probability = 0%, 1%, 3%, and 10%; RTT = 35ms and 200ms; TCP initcwnd=20.
A bar graph whose y-axis is "handshake time % increase" and whose x-axis is a sequence of percentiles (50th, 75th, and 90th). At each percentile are two bars, one blue (for the traditional handshake protocol) and one orange (for post-quantum handshakes). In all three instances, the orange bar is around twice as high as the blue one.

Figure 1 shows the percentage increase in the duration of the TLS 1.3 handshake for the 50th, 75th, and 90th percentiles of the aggregate datasets collected for 1Mbps bandwidth; 0%, 1%, 3%, and 10% loss probability; and 35-millisecond and 200-millisecond RTT. We can see that the ML-DSA size (16KB) certificate chain takes almost twice as much time as the 8KB chain. This means that if we manage to keep the volume of ML-DSA authentication data low, it would significantly benefit the speed of post-quantum handshakes in low-bandwidth connections.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at almost the same value and all drop precipitously from 0 KiB to 50 KiB, continuing to decline from 50 KiB to 200 KiB, with the 90th-percentile line declining slightly more rapidly than the other two.
Figure 2: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 2 shows the percentage increase in the duration of the post-quantum handshake relative to the existing algorithm for all percentiles and different data sizes at 0% loss and 1Gbps bandwidth. We can observe that although the slowdown is low (∼3%) at 0 kibibytes (KiB, or multiples of 1,024 bytes, the nearest power of 2 to 1,000) from the server (equivalent to the handshake), it drops even more (∼1%) as the data from the server increases. At the 90th percentile the slowdown is slightly lower.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at exactly the same value and all decline in lockstep, dropping precipitously from 0 KiB to 50 KiB and continuing a steady decline from 50 KiB to 200 KiB.
Figure 3: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.

Figure 3 shows the percentage increase in the TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 0% loss probability. We can see that increases for the three percentiles are almost identical. They start high (∼33%) at 0KiB from the server, but as the data size from the server increases, they drop to ∼6% because the handshake data size is amortized over the connection.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. The 50th-percentile line drops precipitously from 0 KiB to 50 KiB, declines more gradually from 50 to 100, then increases slightly from 100 to 200. The 90th-percentile line starts much lower but increases slightly to 50 KiB, before declining to 100 and 200. The 75th-percentile line starts lower still, declines to 100 KiB, the increases slightly from 100 to 200.
Figure 4: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections. Loss = 10%; bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.
Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

Figure 4 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200 KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 10% loss probability. It shows that at 10% loss, the TTLB increase settles between 20-30% for all percentiles. The same experiments for 35ms RTT produced similar results. Although a 20-30% increase may seem high, we note that re-running the experiments could sometimes lead to smaller or higher percentage increases because of the general network instability of the scenario. Also, bear in mind that TTLBs for the existing algorithm at 200KiB from the server, 200ms RTT, and 10% loss were 4,644ms, 7,093ms, and 10,178ms, whereas their post-quantum-connection equivalents were 6,010ms, 8,883ms, and 12,378ms. At 0% loss they were 2,364ms, 2,364ms, and 2,364ms. So, although the TTLBs for the post-quantum connections increased by 20-30% relative to the conventional connections, the conventional connections are already impaired (by 97-331%) due to network loss. An extra 20-30% is not likely to make much difference in an already highly degraded connection time.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at different values but all decline precipitously from 0 KiB to 50 KiB. From 50KiB to 100 KiB, the 75th-percentile line and the 50th-percentile line continue to decline, but the 90th-percentile line increases slightly. All three increase slightly between 100 KiB and 200.
Figure 5: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability under “volatile network” conditions. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 5 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability and 0-200KiB data sizes transferred from the server. To model a highly volatile RTT, we used a Pareto-normal distribution with a mean of 35ms and 35/4ms jitter. We can see that the increase in post-quantum connection TTLB starts high at 0KiB server data and drops to 4-5%. As with previous experiments, the percentages were more volatile the higher the loss probabilities, but overall, the results show that even under “volatile network conditions” the TTLB drops to acceptable levels as the amount of transferred data increases.

A line graph whose y-axis is the cumulative distribution function (CDF), from 0.0 to 1.0, and whose x-axis is time to last byte (TTLB) in milliseconds. There are five differently colored lines. The first four all have the same round-trip time. Two of them have bandwidth of 1Gbps and two bandwidth of 1Mbps. Within each bandwidth tier, the two lines represent 0% and 5% loss. The fifth line is Pareto-normal round-trip time. The high-bandwidth lines and the Pareto-normal line all begin near the origin. The high-bandwidth, low-loss line is almost vertical, reaching 1.0 almost immediately. The high-bandwidth, high-loss line and Pareto-normal line look like offsets of each other, with the Pareto-normal line increasing at a slightly lower rate; both rise fairly quickly, reaching 0.8 at about 1,000 milliseconds. The low-bandwidth lines both begin at TTLB values of of about 2,000. Again, the low-loss line is almost vertical; the higher-loss line rises at a slower rate.
Figure 6: TTLB cumulative distribution function for post-quantum TLS 1.3 connections. 200KiB from the server; RTT = 35ms; TCP initcwnd = 20.

To confirm the volatility under unstable network conditions, we used the TTLB cumulative distribution function (CDF) for post-quantum TLS 1.3 connections transferring 200KiB from the server (figure 6). We observe that under all types of volatile conditions (1Gbps and 5% loss, 1Mbps and 10% loss, Pareto-normal distributed network delay), the TTLB increases very early in the experimental measurement sample, which demonstrates that the total connection times are highly volatile. We made the same observation with TLS 1.3 handshake times under unstable network conditions.

Conclusion

This work demonstrated that the practical effect of data-heavy, post-quantum algorithms on TLS 1.3 connections is lower than their effect on the handshake itself. Low-loss, low- or high-bandwidth connections will see little impact from post-quantum handshakes when transferring sizable amounts of data. We also showed that although the effects of PQ handshakes could vary under unstable conditions with higher loss rates or high-variability delays, they stay within certain limits and drop as the total amount of transferred data increases. Additionally, we saw that unstable connections inherently provide poor completion times; a small latency increase due to post-quantum handshakes would not render them less usable than before. This does not mean that trimming the amount of handshake data is undesirable, especially if little application data is sent relative to the size of the handshake messages.

For more details, please see our paper.

Related content

US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Bellevue
We are seeking a Senior Manager, Applied Science to lead the applied science charter for Amazon’s Last-Hundred-Yard automation initiative, developing the algorithms, models, and learning systems that enable safe, reliable, and scalable autonomous delivery from vehicle to customer doorstep. This role owns the scientific direction across perception, localization, prediction, planning, learning-based controls, human-robot interaction (HRI), and data-driven autonomy validation, operating in complex, unstructured real-world environments. The Senior Manager will build and lead a high-performing team of applied scientists, set the technical vision and research-to-production roadmap, and ensure tight integration between science, engineering, simulation, and operations. This leader is responsible for translating ambiguous real-world delivery problems into rigorous modeling approaches, measurable autonomy improvements, and production-ready solutions that scale across cities, terrains, weather conditions, and customer scenarios. Success in this role requires deep expertise in machine learning and robotics, strong people leadership, and the ability to balance long-term scientific innovation with near-term delivery milestones. The Senior Manager will play a critical role in defining how Amazon applies science to unlock autonomous last-mile delivery at scale, while maintaining the highest bars for safety, customer trust, and operational performance. Key job responsibilities Set and own the applied science vision and roadmap for last-hundred-yard automation, spanning perception, localization, prediction, planning, learning-based controls, and HRI. Build, lead, and develop a high-performing applied science organization, including hiring, mentoring, performance management, and technical bar-raising. Drive the end-to-end science lifecycle from problem formulation and data strategy to model development, evaluation, deployment, and iteration in production. Partner closely with autonomy engineering to translate scientific advances into scalable, production-ready autonomy behaviors. Define and own scientific success metrics (e.g., autonomy performance, safety indicators, scenario coverage, intervention reduction) and ensure measurable impact. Lead the development of learning-driven autonomy using real-world data, simulation, and offline/online evaluation frameworks. Establish principled approaches for generalization across environments, including weather, terrain, lighting, customer properties, and interaction scenarios. Drive alignment between real-world operations and simulation, ensuring tight feedback loops for data collection and model validation. Influence safety strategy and validation by defining scientific evidence required for autonomy readiness and scale. Represent applied science in executive reviews, articulating trade-offs, risks, and long-term innovation paths.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases