Determining causality in correlated time series

New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

Given observed time series and a target time series of interest, can we identify the causes of the target, without excluding the presence of hidden time series? This question arises in many fields — such as finance, biology, and supply chain management — where sequences of data constitute partial observations of a system.

Imagine, for instance, that we have time series for the prices of dairy products. From the data alone, can we identify the causes of fluctuations in the price of butter?

Dairy prices.png
The prices of dairy products in Germany are correlated, but do any of those correlations imply causation?

The standard way to represent causal relationships between variables that are associated with each other is with a graph whose nodes represent variables and whose edges represent causal relationships.

In a paper that we presented at the International Conference on Machine Learning (ICML) 2021, coauthored by Bernhard Schölkopf, we described a new technique for detecting all the direct causal features of a target time series — and only the direct or indirect causal features — given some graph constraints. The proposed method yielded false-positive rates of detected causes close to zero.

The constraints we observe refer to the target and the “memory” of some hidden time series (the lack of dependency on their own pasts, in some cases). We wanted to limit our assumptions to those that can be naturally derived from the setting and that could not be avoided otherwise. Therefore, we wanted to avoid strong assumptions made by other methods, such as excluding hidden common causes (unobserved time series that caused multiple observed ones).

We also wanted to avoid other drawbacks of prior methods, such as requiring interventions on the system (to test for particular causal sequences) and requiring large conditioning sets (sets of variables that must be controlled for to detect dependences) or exhaustive conditional-independence tests, which hinder the statistical strength of the outcome.

Our method, by contrast, accounts for hidden common causes, uses only observational data, and constructs conditioning sets that are small and efficient in terms of signal-to-noise ratio, given some graph constraints that seemed hard to avoid.

Conditioning set.gif
The researchers' new method constructs a conditioning set — a set of variables that must be controlled for — that enables tests for conditional dependence and independence in a causal graph.

Conditional independence

As is well known, statistical dependence (i.e., correlation in linear cases) does not imply causation. The graphs we use to represent causal relationships between associated variables are so-called directed acyclic graphs (DAGs), meaning the edges have direction and there are no loops. The direction of the edges (represented by arrows in the graphs below) indicates the direction of causal influence. In the time series case, we use “full time DAGs”, where each node represents a different time step from a time series. 

To analyze whether a third variable, S, explains a statistical dependency (i.e., correlation) between two other variables, one checks whether the dependency disappears after restricting the statistics to data points with fixed values of S. In larger graphs, S can be a whole set of variables, which we call a conditioning set. Controlling for all the variables in a conditioning set is known as conditional independence testing and is the main tool we use in our method. 

Another important notion is that of confounding. If two variables, X and Y, are dependent, not because one causes the other, but because they’re both caused by a third variable, U, we say that they are confounded by U.

Before we get into the complex graphs of time series, let's present the intuition behind our method with simple graphs. 

In the graphs below, we manage to distinguish between causal influence and confounding relationships by searching for different patterns of conditional independence. In both graphs, X and Y are dependent (i.e., they vary together). But in the left-hand graph, Z and Y are independent when we condition on the cause X; i.e., when we control for X, variations in Y become independent from variations in Z

When, however, there is a hidden confounder between X and Y, as in the graph at right, Z and Y become dependent when conditioning on X.

This can seem counterintuitive. When we condition on a variable, we treat it as if we know its outcome. In the graph below, because we know how Z contributes to X, the difference between this contribution and the actual value of X comes from U (with some variation from noise). Since Y varies with U, it reflects that variation as well, and Z and Y become dependent.

simple_iid_case.png
An example of how the presence of a confounder can create causal dependence.

Causality in time series

This idea of finding similar characteristic patterns of conditional independences to distinguish causes from confounders is very relevant to our method. In the time series case, the graph is much more complicated than in the examples above. Here we show such a time series graph:

Baseline causal graph.png
A full time graph with hidden time series (U).

Here, we have a univariate (one-dimensional) target time series, Y, whose causes we want to find. Then we have several observed candidate time series, Xi, which might be causing the target or have different dependencies with it. Finally, we allow for the existence of several hidden time series, U.

We know the directions of some edges from the time order, which is helpful. On the other hand, time series’ dependence on their own pasts complicates the picture, because it creates common-cause schemes between nodes. 

For each candidate time series, we want to isolate the current and previous node and the corresponding target node. We thus extract triplets like the one indicated by green and yellow in the graph below.

Causal graph conditional tests.png
Tests for conditional dependence and independence in the full time graph.

If we manage to do that, then it is enough to check whether the green nodes become independent when we simultaneously condition on the yellow node and all the purple ones. 

If there is a hidden confounder between the yellow node and the target’s green node, then, conditioning on the yellow node will force a dependence between the two green nodes, as in the first example above. But to perform that test, we need to isolate our triplet from the causal influences of other time series. 

To do that, we construct a conditioning set, S, that includes at most one node from each time series that is dependent on the target. This node corresponds to the one that enters the previous time stamp of the target (Yt in the graph above). And of course, we also need to include the previous time stamp of the target node itself (Yt, above) to remove the target's past dependency, as well as the yellow node.

Here we see that indeed the relationship between Xj and Y is confounded (Xj does not cause Y, although they appear to be related). We see that the second condition of our method is violated, and consequently, Xj is correctly rejected (as it is not a cause of Y).

Given some restrictions on the graph, which we do not consider extreme given the hardness of hidden confounding, we propose and prove two theorems for the identification of direct and indirect causes in single-lag graphs — that is, graphs in which a node in a candidate time series shares only one edge with nodes in the target time series. These theorems result in an algorithm with only two conditional-independence tests and well-defined conditioning sets, which scales linearly with the number of candidate time series. 

dairy_experiments_graphs.PNG
Graphs of the causal relationships between dairy-product prices in Germany, Ireland, and the UK, with the true-positive rates (TPR) and true-negative rates (TNR) achieved by the researchers' new method.

We now return to our original motivational example, predicting the price of butter. The real-world data we used to test our approach included the price of raw milk, the price of butter, and, depending on the country, the prices of other dairy products, such as cheese and whey powder. Our method correctly deduced that the price of butter was caused by the price of raw milk but not by the prices of other dairy products, although they were strongly dependent on it. In one dataset, where the data did not include the price of raw milk, our method correctly deduced that the dependencies between the price of butter and the prices of other dairy products did not imply causation. 

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled and experienced Research Scientist to help us build the future of experimentation systems at Amazon. About you: You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You enjoy enabling intelligent decisions in the face of real-world, noisy data, and have a bias for delivering simple solutions to complex problems. You're a scientist looking for a career where you'll be able to build, to deliver, and to impress. You're a thought leader and you demonstrate this by delivering solutions, not just by having ideas. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative and friendly team environment. About us together: We're going to help Amazon innovate faster and smarter by designing and delivering the next generation of data analysis tools and visualizations. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make complex decisions, but we'll all understand why. We'll be the dream team. We have decades of combined experience on the team in many areas of data science so it's a great environment in which to learn and grow. Many of us have university teaching experience and we're happy to teach. But, we're also like children playing at the edge of a vast unexplored territory; we have a lot to learn and we are all exploring together with a sense of awe and humility.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Sr. Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. If you’re interested in our particular philosophy of AI progress, reach out via AGI-SFLab-Jobs@amazon.com. Key job responsibilities - Develop cutting edge multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
AT, Graz
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships.