Economics Nobelist on causal inference

In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.

Since 2013, Amazon has held an annual internal conference, the Amazon Machine Learning Conference (AMLC), where machine learning practitioners from around the company come together to share their work, teach and learn new techniques, and discuss best practices.

At the third AMLC, in 2015, Guido Imbens, a professor of economics at the Stanford University Graduate School of Business, gave a popular tutorial on causality and machine learning. Nine years and one Nobel Prize for economics later, Imbens — now in his tenth year as an Amazon academic research consultant — was one of the keynote speakers at the 2024 AMLC, held in October.

Guido cropped.png
Guido Imbens, Nobel laureate, professor of economics at the Stanford University Graduate School of Business, and an Amazon academic research consultant for the past 10 years.

In his talk, Imbens discussed causal inference, a mainstay of his research for more than 30 years and the topic that the Nobel committee highlighted in its prize citation. In particular, he considered so-called panel data, in which multiple units — say, products, customers, or geographic regions — and outcomes — say, sales or clicks — are observed at discrete points in time.

Over particular time spans, some units receive a treatment — say, a special product promotion or new environmental regulation — whose effects are reflected in the outcome measurements. Causal inference is the process of determining how much of the change in outcomes over time can be attributed to the treatment. This means adjusting for spurious correlations that result from general trends in the data, which can be inferred from trends among the untreated (control) units.

Imbens began by discussing the value of his work at Amazon. “I started working with people here at Amazon in 2014, and it's been a real pleasure and a real source of inspiration for my research, interacting with the people here and seeing what kind of problems they're working on, what kind of questions they have,” he said. “I've always found it very useful in my econometric, in my statistics, in my methodological research to talk to people who are using these methods in practice, who are actually working with these things on the ground. So it's been a real privilege for the last 10 years doing that with the people here at Amazon.”

Panel data

Then, with no further ado, he launched into the substance of his talk. Panel data, he explained, is generally represented by a pair of matrices, whose rows represents units and whose columns represent points in time. In one matrix, the entries represent measurements made on particular units at particular times; the other matrix takes only binary values, which represent whether a given unit was subject to treatment during the corresponding time span.

Related content
Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

Ideally, for a given unit and a given time span, we would run an experiment in which the unit went untreated; then we would back time up and run the experiment again, with the treatment. But of course, time can’t be backed up. So instead, for each treated cell in the matrix, we estimate what the relevant measurement would have been if the treatment hadn’t been applied, and we base that estimate on the outcomes for other units and time periods.

For ease of explanation, Imbens said, he considered the case in which only one unit was treated, for only one time interval: “Once I have methods that work effectively for that case, the particular methods I'm going to suggest extend very naturally to the more-general assignment mechanism,” he said. “This is a very common setup.”

Control estimates

Imbens described five standard methods for estimating what would have been the outcome if a treated unit had been untreated during the same time period. The first method, which is very common in empirical work in economics, is known as known as difference of differences. It involves a regression analysis of all the untreated data up to the treatment period; the regression function can then be used to estimate the outcome for the treated unit if it hadn’t been treated.

The second method is called synthetic control, in which a control version of the treated unit is synthesized as a weighted average of the other control units.

“One of the canonical examples is one where he [Alberto Abadie, an Amazon Scholar, pioneer of synthetic control, and long-time collaborator of Imbens] is interested in estimating the effect of an anti-smoking regulation in California that went into effect in 1989,” Imbens explained. “So he tries to find the convex combination of the other states such that smoking rates for that convex combination match the actual smoking rates in California prior to 1989 — say, 40% Arizona, 30% Utah, 10% Washington and 20% New York. Once he has those weights, he then estimates the counterfactual smoking rate in California.”

Guido Imbens AMLC keynote figure
A synthetic control estimates a counterfactual control for a treated unit by synthesizing outcomes for untreated units. For instance, smoking rates in California might by synthesized as a convex combination of smoking rates in other states.

The third method, which Imbens and a colleague had proposed in 2016, adds an intercept to the synthetic-control equation; that is, it specifies an output value for the function when all the unit measurements are zero.

The final two methods were variations on difference of differences that added another term to the function to be optimized: a low-rank matrix, which approximates the results of the outcomes matrix at a lower resolution. The first of these variations — the matrix completion method — simply adds the matrix, with a weighting factor, to the standard difference-of-differences function.

Related content
Amazon Scholar David Card wins half the award, while academic research consultant Guido Imbens shares in the other half.

The second variation — synthetic difference of differences — weights the distances between the unit-time measurements and the regression curve according to the control units’ similarities to the unit that received the intervention.

“In the context of the smoking example,” Imbens said, “you assign more weight to units that are similar to California, that match California better. So rather than pretending that Delaware or Alaska is very similar to California — other than in their level — you only put weight on states that are very similar to California.”

Drawbacks

Having presented these five methods, Imbens went on to explain what he found wrong with them. The first problem, he said, is that they treat the outcome and treatment matrices as both row (units) and column (points in time) exchangeable. That is, the methods produce the same results whatever the ordering of rows and columns in the matrices.

“The unit exchangeability here seems very reasonable,” Imbens said. “We may have some other covariates, but in principle, there's nothing that distinguishes these units or suggests treating them in a way that's different from exchangeable.

Related content
Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

“But for the time dimension, it's different. You would think that if we're trying to predict outcomes in 2020, having outcomes measured in 2019 is going to be much more useful than having outcomes measured in 1983. We think that there's going to be correlation over time that makes predictions based on values from 2019 much more likely to be accurate than predictions based on values from 1983.”

The second problem, Imbens said, is that while the methods work well in the special case he considered, where only a single unit-time pair is treated — and indeed, they work well under any conditions in which the treatment assignments have a clearly discernible structure — they struggle in cases where the treatment assignments are more random. That’s because, with random assignment, units drop in and out of the control group from one time period to the next, making accurate regression analysis difficult.

A new estimator

So Imbens proposed a new estimator, one based on the matrix completion method, but with additional terms that apply two sets of weights to each control unit’s contribution to the regression analysis. The first weight reduces the contribution of a unit measurement according to its distance in time from the measurement of the treated unit — that is, it privileges more recent measurements.

Related content
The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The second weight reduces the contributions of control unit measurements according to their absolute distance from the measurement of the treated unit. There, the idea is to limit the influence of outliers in sparse datasets — that is, datasets that control units are constantly dropping in and out of.

Imbens then compared the performance of his new estimator to those of the other five, on nine existing datasets that had been chosen to test the accuracy of prior estimators. On eight of the nine datasets, Imbens’s estimator outperformed all five of its predecessors, sometimes by a large margin; on the ninth dataset, it finished a close second to the difference-of-differences approach — which, however, was the last-place finisher on several other datasets.

Imbens estimator.png
Root mean squared error of six estimators on nine datasets, normalized to the best-performing dataset. Imbens’s new estimator, the doubly weighted causal panel (DWCP) estimator, outperforms its predecessors, often by a large margin.

“I don't want to push this as a particular estimator that you should use in all settings,” Imbens explained. “I want to mainly show that even simple changes to existing classes of estimators can actually do substantially better than the previous estimators by incorporating the time dimension in a more uh more satisfactory way.”

For purposes of causal inference, however, the accuracy of an estimator is not the only consideration. The reliability of the estimator — its power, in the statistical sense — also depends on its variance, the degree to which its margin of error deviates from the mean in particular instances. The lower the variance, the more likely the estimator is to provide accurate estimates.

Variance of variance

For the rest of his talk, Imbens discussed methods of estimating the variance of counterfactual estimators. Here things get a little confusing, because the variance estimators themselves display variance. Imbens advocated the use of conditional variance estimators, which hold some variables fixed — in the case of panel data, unit, time, or both — and estimate the variance of the free variables. Counterintuitively, higher-variance variance estimators, Imbens said, offer more power.

Related content
Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.

“In general, you should prefer the conditional variance because it adapts more to the particular dataset you're analyzing,” Imbens explained. “It's going to give you more power to find the treatment effects. Whereas the marginal variance” — an alternative and widely used method for estimating variance — “has the lowest variance itself, and it's going to have the lowest power in general for detecting treatment effects.”

Imbens then presented some experimental results using synthetic panel data that indicated that, indeed, in cases where data is heteroskedastic — meaning that the variance of one variable increases with increasing values of the other — variance estimators that themselves use conditional variance have greater statistical power than other estimators.

“There's clearly more to be done, both in terms of estimation, despite all the work that's been done in the last couple of years in this area, and in terms of variance estimation,” Imbens concluded. “And where I think the future lies for these models is a combination of the outcome modeling by having something flexible in terms of both factor models as well as weights that ensure that you're doing the estimation only locally. And we need to do more on variance estimation, keeping in mind both power and validity, with some key role for modeling some of the heteroskedasticity.”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!