Economics Nobelist on causal inference

In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.

Since 2013, Amazon has held an annual internal conference, the Amazon Machine Learning Conference (AMLC), where machine learning practitioners from around the company come together to share their work, teach and learn new techniques, and discuss best practices.

At the third AMLC, in 2015, Guido Imbens, a professor of economics at the Stanford University Graduate School of Business, gave a popular tutorial on causality and machine learning. Nine years and one Nobel Prize for economics later, Imbens — now in his tenth year as an Amazon academic research consultant — was one of the keynote speakers at the 2024 AMLC, held in October.

Guido cropped.png
Guido Imbens, Nobel laureate, professor of economics at the Stanford University Graduate School of Business, and an Amazon academic research consultant for the past 10 years.

In his talk, Imbens discussed causal inference, a mainstay of his research for more than 30 years and the topic that the Nobel committee highlighted in its prize citation. In particular, he considered so-called panel data, in which multiple units — say, products, customers, or geographic regions — and outcomes — say, sales or clicks — are observed at discrete points in time.

Over particular time spans, some units receive a treatment — say, a special product promotion or new environmental regulation — whose effects are reflected in the outcome measurements. Causal inference is the process of determining how much of the change in outcomes over time can be attributed to the treatment. This means adjusting for spurious correlations that result from general trends in the data, which can be inferred from trends among the untreated (control) units.

Imbens began by discussing the value of his work at Amazon. “I started working with people here at Amazon in 2014, and it's been a real pleasure and a real source of inspiration for my research, interacting with the people here and seeing what kind of problems they're working on, what kind of questions they have,” he said. “I've always found it very useful in my econometric, in my statistics, in my methodological research to talk to people who are using these methods in practice, who are actually working with these things on the ground. So it's been a real privilege for the last 10 years doing that with the people here at Amazon.”

Panel data

Then, with no further ado, he launched into the substance of his talk. Panel data, he explained, is generally represented by a pair of matrices, whose rows represents units and whose columns represent points in time. In one matrix, the entries represent measurements made on particular units at particular times; the other matrix takes only binary values, which represent whether a given unit was subject to treatment during the corresponding time span.

Related content
Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

Ideally, for a given unit and a given time span, we would run an experiment in which the unit went untreated; then we would back time up and run the experiment again, with the treatment. But of course, time can’t be backed up. So instead, for each treated cell in the matrix, we estimate what the relevant measurement would have been if the treatment hadn’t been applied, and we base that estimate on the outcomes for other units and time periods.

For ease of explanation, Imbens said, he considered the case in which only one unit was treated, for only one time interval: “Once I have methods that work effectively for that case, the particular methods I'm going to suggest extend very naturally to the more-general assignment mechanism,” he said. “This is a very common setup.”

Control estimates

Imbens described five standard methods for estimating what would have been the outcome if a treated unit had been untreated during the same time period. The first method, which is very common in empirical work in economics, is known as known as difference of differences. It involves a regression analysis of all the untreated data up to the treatment period; the regression function can then be used to estimate the outcome for the treated unit if it hadn’t been treated.

The second method is called synthetic control, in which a control version of the treated unit is synthesized as a weighted average of the other control units.

“One of the canonical examples is one where he [Alberto Abadie, an Amazon Scholar, pioneer of synthetic control, and long-time collaborator of Imbens] is interested in estimating the effect of an anti-smoking regulation in California that went into effect in 1989,” Imbens explained. “So he tries to find the convex combination of the other states such that smoking rates for that convex combination match the actual smoking rates in California prior to 1989 — say, 40% Arizona, 30% Utah, 10% Washington and 20% New York. Once he has those weights, he then estimates the counterfactual smoking rate in California.”

Guido Imbens AMLC keynote figure
A synthetic control estimates a counterfactual control for a treated unit by synthesizing outcomes for untreated units. For instance, smoking rates in California might by synthesized as a convex combination of smoking rates in other states.

The third method, which Imbens and a colleague had proposed in 2016, adds an intercept to the synthetic-control equation; that is, it specifies an output value for the function when all the unit measurements are zero.

The final two methods were variations on difference of differences that added another term to the function to be optimized: a low-rank matrix, which approximates the results of the outcomes matrix at a lower resolution. The first of these variations — the matrix completion method — simply adds the matrix, with a weighting factor, to the standard difference-of-differences function.

Related content
Amazon Scholar David Card wins half the award, while academic research consultant Guido Imbens shares in the other half.

The second variation — synthetic difference of differences — weights the distances between the unit-time measurements and the regression curve according to the control units’ similarities to the unit that received the intervention.

“In the context of the smoking example,” Imbens said, “you assign more weight to units that are similar to California, that match California better. So rather than pretending that Delaware or Alaska is very similar to California — other than in their level — you only put weight on states that are very similar to California.”

Drawbacks

Having presented these five methods, Imbens went on to explain what he found wrong with them. The first problem, he said, is that they treat the outcome and treatment matrices as both row (units) and column (points in time) exchangeable. That is, the methods produce the same results whatever the ordering of rows and columns in the matrices.

“The unit exchangeability here seems very reasonable,” Imbens said. “We may have some other covariates, but in principle, there's nothing that distinguishes these units or suggests treating them in a way that's different from exchangeable.

Related content
Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

“But for the time dimension, it's different. You would think that if we're trying to predict outcomes in 2020, having outcomes measured in 2019 is going to be much more useful than having outcomes measured in 1983. We think that there's going to be correlation over time that makes predictions based on values from 2019 much more likely to be accurate than predictions based on values from 1983.”

The second problem, Imbens said, is that while the methods work well in the special case he considered, where only a single unit-time pair is treated — and indeed, they work well under any conditions in which the treatment assignments have a clearly discernible structure — they struggle in cases where the treatment assignments are more random. That’s because, with random assignment, units drop in and out of the control group from one time period to the next, making accurate regression analysis difficult.

A new estimator

So Imbens proposed a new estimator, one based on the matrix completion method, but with additional terms that apply two sets of weights to each control unit’s contribution to the regression analysis. The first weight reduces the contribution of a unit measurement according to its distance in time from the measurement of the treated unit — that is, it privileges more recent measurements.

Related content
The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The second weight reduces the contributions of control unit measurements according to their absolute distance from the measurement of the treated unit. There, the idea is to limit the influence of outliers in sparse datasets — that is, datasets that control units are constantly dropping in and out of.

Imbens then compared the performance of his new estimator to those of the other five, on nine existing datasets that had been chosen to test the accuracy of prior estimators. On eight of the nine datasets, Imbens’s estimator outperformed all five of its predecessors, sometimes by a large margin; on the ninth dataset, it finished a close second to the difference-of-differences approach — which, however, was the last-place finisher on several other datasets.

Imbens estimator.png
Root mean squared error of six estimators on nine datasets, normalized to the best-performing dataset. Imbens’s new estimator, the doubly weighted causal panel (DWCP) estimator, outperforms its predecessors, often by a large margin.

“I don't want to push this as a particular estimator that you should use in all settings,” Imbens explained. “I want to mainly show that even simple changes to existing classes of estimators can actually do substantially better than the previous estimators by incorporating the time dimension in a more uh more satisfactory way.”

For purposes of causal inference, however, the accuracy of an estimator is not the only consideration. The reliability of the estimator — its power, in the statistical sense — also depends on its variance, the degree to which its margin of error deviates from the mean in particular instances. The lower the variance, the more likely the estimator is to provide accurate estimates.

Variance of variance

For the rest of his talk, Imbens discussed methods of estimating the variance of counterfactual estimators. Here things get a little confusing, because the variance estimators themselves display variance. Imbens advocated the use of conditional variance estimators, which hold some variables fixed — in the case of panel data, unit, time, or both — and estimate the variance of the free variables. Counterintuitively, higher-variance variance estimators, Imbens said, offer more power.

Related content
Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.

“In general, you should prefer the conditional variance because it adapts more to the particular dataset you're analyzing,” Imbens explained. “It's going to give you more power to find the treatment effects. Whereas the marginal variance” — an alternative and widely used method for estimating variance — “has the lowest variance itself, and it's going to have the lowest power in general for detecting treatment effects.”

Imbens then presented some experimental results using synthetic panel data that indicated that, indeed, in cases where data is heteroskedastic — meaning that the variance of one variable increases with increasing values of the other — variance estimators that themselves use conditional variance have greater statistical power than other estimators.

“There's clearly more to be done, both in terms of estimation, despite all the work that's been done in the last couple of years in this area, and in terms of variance estimation,” Imbens concluded. “And where I think the future lies for these models is a combination of the outcome modeling by having something flexible in terms of both factor models as well as weights that ensure that you're doing the estimation only locally. And we need to do more on variance estimation, keeping in mind both power and validity, with some key role for modeling some of the heteroskedasticity.”

Research areas

Related content

US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Bellevue
We are seeking a Senior Manager, Applied Science to lead the applied science charter for Amazon’s Last-Hundred-Yard automation initiative, developing the algorithms, models, and learning systems that enable safe, reliable, and scalable autonomous delivery from vehicle to customer doorstep. This role owns the scientific direction across perception, localization, prediction, planning, learning-based controls, human-robot interaction (HRI), and data-driven autonomy validation, operating in complex, unstructured real-world environments. The Senior Manager will build and lead a high-performing team of applied scientists, set the technical vision and research-to-production roadmap, and ensure tight integration between science, engineering, simulation, and operations. This leader is responsible for translating ambiguous real-world delivery problems into rigorous modeling approaches, measurable autonomy improvements, and production-ready solutions that scale across cities, terrains, weather conditions, and customer scenarios. Success in this role requires deep expertise in machine learning and robotics, strong people leadership, and the ability to balance long-term scientific innovation with near-term delivery milestones. The Senior Manager will play a critical role in defining how Amazon applies science to unlock autonomous last-mile delivery at scale, while maintaining the highest bars for safety, customer trust, and operational performance. Key job responsibilities Set and own the applied science vision and roadmap for last-hundred-yard automation, spanning perception, localization, prediction, planning, learning-based controls, and HRI. Build, lead, and develop a high-performing applied science organization, including hiring, mentoring, performance management, and technical bar-raising. Drive the end-to-end science lifecycle from problem formulation and data strategy to model development, evaluation, deployment, and iteration in production. Partner closely with autonomy engineering to translate scientific advances into scalable, production-ready autonomy behaviors. Define and own scientific success metrics (e.g., autonomy performance, safety indicators, scenario coverage, intervention reduction) and ensure measurable impact. Lead the development of learning-driven autonomy using real-world data, simulation, and offline/online evaluation frameworks. Establish principled approaches for generalization across environments, including weather, terrain, lighting, customer properties, and interaction scenarios. Drive alignment between real-world operations and simulation, ensuring tight feedback loops for data collection and model validation. Influence safety strategy and validation by defining scientific evidence required for autonomy readiness and scale. Represent applied science in executive reviews, articulating trade-offs, risks, and long-term innovation paths.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases