Economics Nobelist on causal inference

In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.

Since 2013, Amazon has held an annual internal conference, the Amazon Machine Learning Conference (AMLC), where machine learning practitioners from around the company come together to share their work, teach and learn new techniques, and discuss best practices.

At the third AMLC, in 2015, Guido Imbens, a professor of economics at the Stanford University Graduate School of Business, gave a popular tutorial on causality and machine learning. Nine years and one Nobel Prize for economics later, Imbens — now in his tenth year as an Amazon academic research consultant — was one of the keynote speakers at the 2024 AMLC, held in October.

Guido cropped.png
Guido Imbens, Nobel laureate, professor of economics at the Stanford University Graduate School of Business, and an Amazon academic research consultant for the past 10 years.

In his talk, Imbens discussed causal inference, a mainstay of his research for more than 30 years and the topic that the Nobel committee highlighted in its prize citation. In particular, he considered so-called panel data, in which multiple units — say, products, customers, or geographic regions — and outcomes — say, sales or clicks — are observed at discrete points in time.

Over particular time spans, some units receive a treatment — say, a special product promotion or new environmental regulation — whose effects are reflected in the outcome measurements. Causal inference is the process of determining how much of the change in outcomes over time can be attributed to the treatment. This means adjusting for spurious correlations that result from general trends in the data, which can be inferred from trends among the untreated (control) units.

Imbens began by discussing the value of his work at Amazon. “I started working with people here at Amazon in 2014, and it's been a real pleasure and a real source of inspiration for my research, interacting with the people here and seeing what kind of problems they're working on, what kind of questions they have,” he said. “I've always found it very useful in my econometric, in my statistics, in my methodological research to talk to people who are using these methods in practice, who are actually working with these things on the ground. So it's been a real privilege for the last 10 years doing that with the people here at Amazon.”

Panel data

Then, with no further ado, he launched into the substance of his talk. Panel data, he explained, is generally represented by a pair of matrices, whose rows represents units and whose columns represent points in time. In one matrix, the entries represent measurements made on particular units at particular times; the other matrix takes only binary values, which represent whether a given unit was subject to treatment during the corresponding time span.

Related content
Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

Ideally, for a given unit and a given time span, we would run an experiment in which the unit went untreated; then we would back time up and run the experiment again, with the treatment. But of course, time can’t be backed up. So instead, for each treated cell in the matrix, we estimate what the relevant measurement would have been if the treatment hadn’t been applied, and we base that estimate on the outcomes for other units and time periods.

For ease of explanation, Imbens said, he considered the case in which only one unit was treated, for only one time interval: “Once I have methods that work effectively for that case, the particular methods I'm going to suggest extend very naturally to the more-general assignment mechanism,” he said. “This is a very common setup.”

Control estimates

Imbens described five standard methods for estimating what would have been the outcome if a treated unit had been untreated during the same time period. The first method, which is very common in empirical work in economics, is known as known as difference of differences. It involves a regression analysis of all the untreated data up to the treatment period; the regression function can then be used to estimate the outcome for the treated unit if it hadn’t been treated.

The second method is called synthetic control, in which a control version of the treated unit is synthesized as a weighted average of the other control units.

“One of the canonical examples is one where he [Alberto Abadie, an Amazon Scholar, pioneer of synthetic control, and long-time collaborator of Imbens] is interested in estimating the effect of an anti-smoking regulation in California that went into effect in 1989,” Imbens explained. “So he tries to find the convex combination of the other states such that smoking rates for that convex combination match the actual smoking rates in California prior to 1989 — say, 40% Arizona, 30% Utah, 10% Washington and 20% New York. Once he has those weights, he then estimates the counterfactual smoking rate in California.”

Guido Imbens AMLC keynote figure
A synthetic control estimates a counterfactual control for a treated unit by synthesizing outcomes for untreated units. For instance, smoking rates in California might by synthesized as a convex combination of smoking rates in other states.

The third method, which Imbens and a colleague had proposed in 2016, adds an intercept to the synthetic-control equation; that is, it specifies an output value for the function when all the unit measurements are zero.

The final two methods were variations on difference of differences that added another term to the function to be optimized: a low-rank matrix, which approximates the results of the outcomes matrix at a lower resolution. The first of these variations — the matrix completion method — simply adds the matrix, with a weighting factor, to the standard difference-of-differences function.

Related content
Amazon Scholar David Card wins half the award, while academic research consultant Guido Imbens shares in the other half.

The second variation — synthetic difference of differences — weights the distances between the unit-time measurements and the regression curve according to the control units’ similarities to the unit that received the intervention.

“In the context of the smoking example,” Imbens said, “you assign more weight to units that are similar to California, that match California better. So rather than pretending that Delaware or Alaska is very similar to California — other than in their level — you only put weight on states that are very similar to California.”

Drawbacks

Having presented these five methods, Imbens went on to explain what he found wrong with them. The first problem, he said, is that they treat the outcome and treatment matrices as both row (units) and column (points in time) exchangeable. That is, the methods produce the same results whatever the ordering of rows and columns in the matrices.

“The unit exchangeability here seems very reasonable,” Imbens said. “We may have some other covariates, but in principle, there's nothing that distinguishes these units or suggests treating them in a way that's different from exchangeable.

Related content
Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

“But for the time dimension, it's different. You would think that if we're trying to predict outcomes in 2020, having outcomes measured in 2019 is going to be much more useful than having outcomes measured in 1983. We think that there's going to be correlation over time that makes predictions based on values from 2019 much more likely to be accurate than predictions based on values from 1983.”

The second problem, Imbens said, is that while the methods work well in the special case he considered, where only a single unit-time pair is treated — and indeed, they work well under any conditions in which the treatment assignments have a clearly discernible structure — they struggle in cases where the treatment assignments are more random. That’s because, with random assignment, units drop in and out of the control group from one time period to the next, making accurate regression analysis difficult.

A new estimator

So Imbens proposed a new estimator, one based on the matrix completion method, but with additional terms that apply two sets of weights to each control unit’s contribution to the regression analysis. The first weight reduces the contribution of a unit measurement according to its distance in time from the measurement of the treated unit — that is, it privileges more recent measurements.

Related content
The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The second weight reduces the contributions of control unit measurements according to their absolute distance from the measurement of the treated unit. There, the idea is to limit the influence of outliers in sparse datasets — that is, datasets that control units are constantly dropping in and out of.

Imbens then compared the performance of his new estimator to those of the other five, on nine existing datasets that had been chosen to test the accuracy of prior estimators. On eight of the nine datasets, Imbens’s estimator outperformed all five of its predecessors, sometimes by a large margin; on the ninth dataset, it finished a close second to the difference-of-differences approach — which, however, was the last-place finisher on several other datasets.

Imbens estimator.png
Root mean squared error of six estimators on nine datasets, normalized to the best-performing dataset. Imbens’s new estimator, the doubly weighted causal panel (DWCP) estimator, outperforms its predecessors, often by a large margin.

“I don't want to push this as a particular estimator that you should use in all settings,” Imbens explained. “I want to mainly show that even simple changes to existing classes of estimators can actually do substantially better than the previous estimators by incorporating the time dimension in a more uh more satisfactory way.”

For purposes of causal inference, however, the accuracy of an estimator is not the only consideration. The reliability of the estimator — its power, in the statistical sense — also depends on its variance, the degree to which its margin of error deviates from the mean in particular instances. The lower the variance, the more likely the estimator is to provide accurate estimates.

Variance of variance

For the rest of his talk, Imbens discussed methods of estimating the variance of counterfactual estimators. Here things get a little confusing, because the variance estimators themselves display variance. Imbens advocated the use of conditional variance estimators, which hold some variables fixed — in the case of panel data, unit, time, or both — and estimate the variance of the free variables. Counterintuitively, higher-variance variance estimators, Imbens said, offer more power.

Related content
Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.

“In general, you should prefer the conditional variance because it adapts more to the particular dataset you're analyzing,” Imbens explained. “It's going to give you more power to find the treatment effects. Whereas the marginal variance” — an alternative and widely used method for estimating variance — “has the lowest variance itself, and it's going to have the lowest power in general for detecting treatment effects.”

Imbens then presented some experimental results using synthetic panel data that indicated that, indeed, in cases where data is heteroskedastic — meaning that the variance of one variable increases with increasing values of the other — variance estimators that themselves use conditional variance have greater statistical power than other estimators.

“There's clearly more to be done, both in terms of estimation, despite all the work that's been done in the last couple of years in this area, and in terms of variance estimation,” Imbens concluded. “And where I think the future lies for these models is a combination of the outcome modeling by having something flexible in terms of both factor models as well as weights that ensure that you're doing the estimation only locally. And we need to do more on variance estimation, keeping in mind both power and validity, with some key role for modeling some of the heteroskedasticity.”

Research areas

Related content

JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with content on Prime Video. Key job responsibilities In this role you will work closely with business stakeholders and other data scientists to develop predictive models, forecast key business metrics, dive deep on the customer and content related factors that drive engagement and create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, build with AWS to deploy machine learning and forecasting models while making a significant impact on how Prime Video makes content investment and selection decisions.
IN, KA, Bengaluru
Amazon’s Last Mile Team is looking for a passionate individual with strong machine learning and GenAI engineering skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization, fleet planning. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. Optimizing the last mile delivery requires deep understanding of transportation, supply chain management, pricing strategies and forecasting, and the GenAI approaches for a diverse range of problems to solve. Only through innovative and strategic thinking, we will make the right capital investments in technology, assets and infrastructures that allows for long-term success. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing solutions to better manage and optimize delivery capacity in the last mile network. The successful candidate should have solid research experience in one or more technical areas of Machine Learning or Large Language Models. These positions will focus on identifying and analyzing opportunities to improve existing algorithms and also on optimizing the system policies across the management of external delivery service providers and internal planning strategies. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. To support their proposals, candidates should be able to independently mine and analyze data, and be able to use any necessary programming and statistical analysis software to do so. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.