Filtering out "forbidden" documents during information retrieval

New method optimizes the twin demands of retrieving relevant content and filtering out bad content.

Content owners make a lot of effort to eliminate bad content that may adversely affect their customers. Bad content can take many forms, such as fake news, paid reviews, spam, offensive language, etc. We call such data items (documents) forbidden docs, or f-docs, for short.

Any data-cleaning process, however, is susceptible to errors. No matter how much effort goes into the cleaning process, some bad content might remain. This week at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), the Alexa Shopping research team presented a paper on information retrieval (IR) in the presence of f-docs. In particular, we’re trying to optimize the twin demands of retrieving content relevant to customer requests and filtering out f-docs.

For example, consider a question posed on a community question-answering (CQA) site, where our goal is to rank answers according to their quality and relevance while filtering out bad ones. The next table presents some answers to the question “Is the Brand X sports watch waterproof?” While some of the answers are helpful, or at least fair, there are a few that should not be exposed to our users as they significantly hurt the search experience.

Forbidden docs.png
A new metric enables information retrieval models to jointly optimize the ordering of query results and the filtration of "forbidden" content.

Filtering algorithms, however, are prone to two types of errors: (1) false positives (i.e., filtering non-f-docs) and (2) false negatives (i.e., including f-docs in the results).

Typically, ranking quality and filtering accuracy are measured independently. However, the number of f-docs left in the ranked list after filtering and their ranking positions heavily affect both the ranking score and the filtering score. Therefore, it is desirable to evaluate the system’s ranking quality as filtering decisions are being made.

The right metric

We look for an evaluation metric that reinforces a ranker according to three criteria: it (1) prunes as many f-docs from the retrieved list as possible; (2) does not prune non-f-docs from the list; and (3) ranks remaining docs according to their relevance to the query while pushing f-docs down the list.

In our paper, my colleagues Nachshon Cohen, Amir Ingber, Elad Kravi, and I analyze the types of metrics that can be used to measure the ranking and filtering quality of the search results. The natural choice is normalized discounted cumulative gain (nDCG), a metric that discounts the relevance of results that appear further down the list; that is, it evaluates a ranking algorithm according to both relevance and rank ordering.

Related content
Locality-sensitive hashing enables cache to hold more than three times as many query results.

With nDCG, relevant labels are associated with positive scores, non-relevant labels with a zero score, and the “forbidden labels” with negative scores. The nDCG score sums the scores of the individual list items, so the score for a ranked list containing f-docs will reflect the number of f-docs in the list, their relative positions in the ranking, and their degree of forbiddenness.

NDCG differs from the ordinary DCG (discounted cumulative gain) score in that the results are normalized by the DCG score of the ideal ranked list — the list ranked according to the ground truth labels. It can be interpreted as a distance between the given rank and the ideal rank.

When all label scores are non-negative — i.e,. no f-docs are among the top k documents in the results — nDCG is bounded in the range [0, 1], where 0 means that all search results are non-relevant, while 1 means that the ranking is ideal.

However, in the presence of negatively scored labels, nDCG is unbounded and therefore unreliable. For instance, unboundedness may lead to extreme over- or undervaluation on some queries, with disproportionate effect on the average metric score.

The nDCGmin metric, a modification of nDCG suggested by Gienapp et al. at CIKM’20, solves this unboundedness problem for the case of negatively scored labels. It measures the DCG scores of both the worst possible ranked list (the reverse of the ideal ranked list) and the ideal list and then performs min-max normalization with these two extreme scores.

Related content
Method using hyperboloid embeddings improves on methods that use vector embeddings by up to 33%.

However, we show in our paper that when ranking and filtering are carried out together — i.e., when the ranker is allowed to retrieve (and to rank) a sublist of the search results — nDCGmin becomes unbounded. As an alternative, we propose nDCGf, a modification of nDCGmin that solves this second unboundedness problem by modifying the normalization scheme in order to handle sublist retrieval.

In particular, nDCGf measures the DCG score of the ideal and the worst sublists over all possible sublists of the results list and then uses the extreme scores of these sublists for min-max normalization.

We show both theoretically and empirically that while nDCGmin is not suitable for the evaluation task of simultaneous ranking and filtering, nDCGf is a reliable metric. Reliability is a standard measure of a metric’s ability to capture the actual difference in performance among rankers, by measuring deviation stability over a test-set of queries.

The next figure shows the reliability of nDCG, nDCGmin, and nDCGf over datasets released for the web-track information retrieval challenge at the Text Retrieval Conference (TREC) for the years 2010-2014. For all years, the reliability of nDCG and nDCGmin is significantly lower than that of nDCGf, due to their improper normalization when negative labels and partial retrieval are allowed.

Metric reliability.png
Reliability of nDCG, nDCGmin, and nDCGf over TREC Web-track datasets for the years 2010–2014.

Model building

After establishing the relevant metric, our paper then shifts focus to jointly learning to rank and filter (LTRF). We assume an LTRF model that optimizes the ranking of the search results while also tuning a filtering threshold such that any document whose score is below this threshold is filtered out.

We experiment with two tasks for which both ranking and filtering are required, using two datasets we compiled: PR (for product reviews) and CQA (for community question answering). We have publicly released the CQA dataset to support further research by the IR community on LTRF tasks.

Related content
A new metric-learning loss function groups together superclasses and learns commonalities within them.

In the PR dataset, our task is to rank product reviews according to their helpfulness while filtering those marked as spam. Similarly, in the CQA dataset our task is to rank lists of human answers to particular questions while filtering bad answers. We show that both ranking only and filtering only fail to provide high-quality ranked-and-filtered lists, measured by nDCGf score.

A key component for model training in any learning-to-rank framework is the loss function to be optimized, which determines the “loss” of the current model with respect to an optimal model. We experiment with several loss functions for model training for the two tasks, demonstrating their success in producing effective LTRF models for the simultaneous-learning-and-filtering task.

LTRF is a new research direction that poses many challenges that deserve further investigation. While our LTRF models succeed at ranking and filtering, the volume of f-docs in the retrieved lists is still too high. Improving the LTRF models is an open challenge, and we hope that our work will encourage other researchers to tackle it.

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, CA, El Segundo
Amazon is seeking an exceptional Senior Applied Scientist to join AGI Info Content team. In this role, you will be at the forefront of developing and enhancing the intelligence of AmazonBot crawler and content processing. The team is a key enabler of Amazon's AGI initiatives such as data pipelines for Olympus model training and collecting data for AGI Info grounding services. Our systems operate on web scale. This requires great combination of innovation to utilize all SOTA ML techniques in combination with model optimization to operate on 100k+ requests/decision per second. Your work will directly impact the quality and efficiency of our data acquisition efforts, ultimately benefiting millions of customers worldwide. Key job responsibilities - Design, develop, and implement advanced algorithms and machine learning models to improve the intelligence and effectiveness of our web crawler and content processing pipelines. - Collaborate with cross-functional teams to identify and prioritize crawling targets, ensuring alignment with business objectives - Analyze and optimize crawling strategies to maximize coverage, freshness, and quality of acquired data while minimizing operational costs as well as dive deep into data to select the highest quality data for LLM model training and grounding. - Conduct in-depth research to stay at the forefront of web acquisition and processing. - Develop and maintain scalable, fault-tolerant systems to handle the vast scale of Amazon's web crawling operations - Monitor and analyze performance metrics, identifying opportunities for improvement and implementing data-driven optimizations - Mentor and guide junior team members, fostering a culture of innovation and continuous learning
US, WA, Seattle
Amazon's Pricing & Promotions Optimization Science is seeking a motivated Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices and promotions on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied scientists to define, measure, and launch customer-obsessed solutions across all products listed on Amazon. This role requires an individual with exceptional AI and data science expertise, excellent cross-functional collaboration skills, strong business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing/promotion techniques - Build strong collaborations. Partner with product, engineering, and science teams within and outside Pricing & Promotions org to deploy AI/ML solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, reinforcement learning, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest science and tech problems About the team About the team: the Pricing and Promotion Optimization team within P2 Science leads the definition, measurement, and implementation of the state-of-the-art AI and data science solutions to improve price/promotion quality across the site and bring value to customers, sellers and Amazon.
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of an innovative product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions.