Formal verification makes RSA faster — and faster to deploy

Optimizations for Amazon's Graviton2 chip boost efficiency, and formal verification shortens development time.

Most secure transactions online are protected by public-key encryption schemes like RSA, whose security depends on the difficulty of factoring large numbers. Public-key encryption improves security because it enables the encrypted exchange of private keys. But because it depends on operations like modular exponentiation of large integers, it introduces significant computational overhead.

Researchers and engineers have introduced all kinds of optimizations to make public-key encryption more efficient, but the resulting complexity makes it difficult to verify that the encryption algorithms are behaving properly. And a bug in an encryption algorithm can be disastrous.

This post explains how Amazon’s Automated Reasoning group improved the throughput of RSA signatures on Amazon’s Graviton2 chip by 33% to 94%, depending on the key size, while also proving the functional correctness of our optimizations using formal verification.

Graviton chip.png
An AWS Graviton chip.

Graviton2 is a server-class CPU developed by Amazon Annapurna Labs, based on Arm Neoverse N1 cores. To improve the throughput of RSA signatures on Graviton2, we combined various techniques for fast modular arithmetic with assembly-level optimizations specific to Graviton2. To show that the optimized code is functionally correct, we formally verified it using the HOL Light interactive theorem prover, which was developed by a member of our team (John Harrison).

Our code is written in a constant-time style (for example, no secret-dependent branches or memory access patterns) to avoid side-channel attacks, which can learn secret information from operational statistics like function execution time. The optimized functions and their proofs are included in Amazon Web Services’ s2n-bignum library of formally verified big-number operations. The functions are also adopted by AWS-LC, the cryptographic library maintained by AWS, and by its bindings Amazon Corretto Crypto Provider (ACCP) and AWS Libcrypto for Rust (AWS-LC-RS).

Key size (bits)Baseline throughput (ops/sec)Improved throughput (ops/sec)Speedup (%)
204829954181.00%
30729512733.50%
4096428194.20%

Improvements in the throughput times of RSA signatures in AWS-LC on Graviton2. 

Step 1. Making RSA fast on Graviton2

Optimizing the execution of RSA algorithms on Graviton2 requires the careful placement and use of multiplication instructions. On 64-bit Arm CPUs, the multiplication of two 64-bit numbers, with a product of up to 128 bits (conventionally designated 64×64→128), are accomplished by two instructions: MUL, producing the lower 64 bits, and UMULH, producing the upper 64 bits. On Graviton2, MUL has a latency of four cycles and stalls the multiplier pipeline for two cycles after issue, while UMULH has a latency of five cycles and stalls the multiplier pipeline for three cycles after issue. Since Neoverse N1 has a single multiplier pipeline but three addition pipelines, multiplication throughput is around one-tenth the throughput of 64-bit addition.

To improve throughput, we (1) applied a different multiplication algorithm, trading multiplication for addition instructions, and (2) used single-instruction/multiple-data (SIMD) instructions to offload a portion of multiplication work to the vector units of the CPU.

Algorithmic optimization

For fast and secure modular arithmetic, Montgomery modular multiplication is a widely used technique. Montgomery multiplication represents numbers in a special form called Montgomery form, and when a sequence of modular operations needs to be executed — as is the case with the RSA algorithm — keeping intermediary products in Montgomery form makes computation more efficient.

We implement Montgomery multiplication as the combination of big-integer multiplication and a separate Montgomery reduction, which is one of its two standard implementations.

Related content
Solution method uses new infrastructure that reduces proof-checking overhead by more than 90%.

On Graviton2, the benefit of this approach is that we can use the well-known Karatsuba algorithm to trade costly multiplications for addition operations. The Karatsuba algorithm decomposes a multiplication into three smaller multiplications, together with some register shifts. It can be performed recursively, and for large numbers, it’s more efficient than the standard multiplication algorithm.

We used Karatsuba’s algorithm for power-of-two bit sizes, such as 2,048 bits and 4,096 bits. For other sizes (e.g., 3072 bits), we still use a quadratic multiplication. The Karatsuba multiplication can be further optimized when the two operands are equal, and we wrote functions specialized for squaring as well.

With these optimizations we achieved a 31–49% speedup in 2,048- and 4,096-bit RSA signatures compared with our original code.

Microarchitectural optimization

Many Arm CPUs implement the Neon single-instruction/multiple-data (SIMD) architecture extension. It adds a file of 128-bit registers, which are viewed as vectors of various sizes (8/16/32/64 bit), and SIMD instructions that can operate on some or all of those vectors in parallel. Furthermore, SIMD instructions use different pipelines than scalar instructions, so both types of instructions can be executed in parallel.

Vectorization strategy. Vectorization is a process that replaces sequential executions of the same operation with a single operation over multiple values; it usually increases efficiency. Using SIMD instructions, we vectorized scalar 64-bit multiplications.

For big-integer multiplication, vectorized 64-bit multiply-low code nicely overlapped with scalar 64-bit multiply-high instructions (UMULH). For squaring, vectorizing two 64×64→128-bit squaring operations worked well. For multiplications occurring in Montgomery reduction, vectorizing 64×64→128-bit multiplications and 64×64→64 multiply-lows worked. To choose which scalar multiplications to vectorize, we wrote a script that enumerated differently vectorized codes and timed their execution. For short code fragments, exhaustive enumeration was possible, but for larger code fragments, we had to rely on experience. The overall solution was chosen only after extensive experiments with other alternatives, such as those described by Seo et. al. at ICISC’14.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

Although the scalar and SIMD units are able to operate in parallel, it is sometimes necessary to move inputs and intermediate results between integer and SIMD registers, and this brings significant complications. The FMOV instruction copies data from a 64-bit scalar register to a SIMD register, but it uses the same pipeline as the scalar multiplier, so its use would reduce scalar-multiplier throughput.

The alternative of loading into a vector register first and then using MOV to copy it to a scalar register has lower latency, but it occupies the SIMD pipeline and hence lowers the throughput of SIMD arithmetic operations. Somewhat counterintuitively, the best solution was to make two separate memory loads into the integer and SIMD registers, with care for their relative placement. We did still use MOV instructions to copy certain SIMD results into integer registers when the SIMD results were already placed at SIMD registers because it was faster than a round trip via store-load instructions.

Fast constant-time table lookup code. Another independent improvement was the reimplementation of a vectorized constant-time lookup table for a fast modular-exponentiation algorithm. Combining this with our earlier optimization further raises our speedup to 80–94% when compared to the throughput of 2,048-/4,096-bit RSA signatures from our initial code, as well as a 33% speedup for 3,072-bit signatures.

Instruction scheduling. Even though Graviton2 is an out-of-order CPU, carefully scheduling instructions is important for performance, due to the finite capacity of components like reorder buffers and issue queues. The implementations discussed here were obtained by manual instruction scheduling, which led to good results but was time consuming.

We also investigated automating the process using the SLOTHY superoptimizer, which is based on constraint solving and a (simplified) microarchitecture model. With additional tweaks to Montgomery reduction to precalculate some numbers used in Karatsuba, SLOTHY optimization enabled a 95–120% improvement on 2,048-/4,096-bit throughputs and 46% on 3,072-bit! However, this method is not yet incorporated into AWS-LC since verifying the automated scheduling proved to be challenging. Studying the potential for automatically proving correctness of scheduling optimizations is a work in progress.

Step 2. Formally verifying the code

To deploy the optimized code in production we need to ensure that it works correctly. Random testing is a cheap approach for quickly checking simple and known cases, but to deliver a higher level of assurance, we rely on formal verification. In this section we explain how we apply formal verification to prove functional correctness of cryptographic primitives.

Introduction to s2n-bignum

AWS’s s2n-bignum is both (1) a framework for formally verifying assembly code in x86-64 and Arm and (2) a collection of fast assembly functions for cryptography, verified using the framework itself.

Related content
New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

Specification in s2n-bignum. Every assembly function in s2n-bignum — including the new assembly functions used in RSA — has a specification stating its functional correctness. A specification states that for any program state satisfying some precondition, the output state of the program must satisfy some postcondition. For example, bignum_mul_4_8(uint64_t *z, uint64_t *x, uint64_t *y) is intended to multiply two 256-bit (four-word) numbers producing a 512-bit (eight-word) result. Its (abbreviated) precondition over an input state s is

  aligned_bytes_loaded s (word pc) bignum_mul_4_8_mc
∧ read PC s = word pc
∧ C_ARGUMENTS [z, x, y] s
∧ bignum_from_memory (x,4) s = a
∧ bignum_from_memory (y,4) s = b

This means that the machine code of bignum_mul_4_8 is loaded at the address currently contained in the program counter PC (aligned_bytes_loaded), symbolic values are assigned to the function arguments according to C’s application binary interface (C_ARGUMENTS ...), and big integers logically represented by the symbols a and b are stored in the memory location pointed to by x and y for four words (bignum_from_memory ...).

The (abbreviated) postcondition over an output state s is

bignum_from_memory (z,8) s = a * b

This means that the multiplied result a * b is stored in the eight-word buffer starting at location z.

One more component is a relation between the input and output states that must be satisfied:

(MAYCHANGE_REGS_AND_FLAGS_PERMITTED_BY_ABI;
MAYCHANGE [memory :> bytes(z,8 * 8)]) (s_in,s_out)

This means that executing the code may change registers/flags permitted by the application binary interface (ABI) and the eight-word buffer starting at z, but all other state components must remain unchanged.

Verifying assembly using HOL Light. To prove that the implementation is correct with respect to the specification, we use the HOL Light interactive theorem prover. In contrast to “black-box” automated theorem provers, tools like HOL Light emphasize a balance between automating routine proof steps and allowing explicit, and programmable, user guidance. When a proof exists on paper or inside someone’s head, a proficient user can effectively rewrite the proof in an interactive theorem prover. S2n-bignum uses a combination of two strategies to verify a program:

Related content
Both secure multiparty computation and differential privacy protect the privacy of data used in computation, but each has advantages in different contexts.

Symbolic execution. Given a representation of the input program state using symbolic variables in place of specific values, symbolic execution infers a symbolic output state at the end of some code snippet, in effect doing a more rigorous and generalized form of program execution. While this still leaves the postcondition to be proved, it strips away artifacts of program execution and leaves a purely mathematical problem.

Intermediate annotations in the style of Floyd-Hoare logic. Each intermediate assertion serves as a postcondition for the preceding code and a precondition for the subsequent code. The assertion need contain only the details that are necessary to prove its corresponding postcondition. This abstraction helps make symbolic simulation more tractable, in terms of both automated-reasoning capacity and the ease with which humans can understand the result.

We assume that the Arm hardware behaves in conformance with the model of s2n-bignum, but the model was developed with care, and it was validated by extensively cross-checking its interpretations against hardware.

Future formal-verification improvements. The formal verification for s2n-bignum does not yet cover nonfunctional properties of the implementation, including whether it may leak information through side channels such as the running time of the code. Rather, we handle this through a disciplined general style of implementation: never using instructions having variable timing, such as division, and no conditional branching/memory access patterns that depend on secret data. Also, we sanity-check some of these properties using simple static checks, and we execute the code on inputs with widely differing bit densities to analyze the corresponding run times and investigate any unexpected correlations.

These disciplines and sanity checks are standard practice with us, and we apply them to all the new implementations described here. In ongoing work, we are exploring the possibility of formally verifying the absence of information leakage.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.