From structured search to learning-to-rank-and-retrieve

Using reinforcement learning improves candidate selection and ranking for search, ad platforms, and recommender systems.

Most modern search applications, ad platforms, and recommender systems share a similar multitier information retrieval (IR) architecture with (at a minimum) a candidate selection or retrieval phase and a candidate ordering or ranking phase. Given a query and a context, the retrieval phase reduces the space of possible candidates from millions, sometimes billions, to (typically) hundreds or less. The ranking phase then fine-tunes the ordering of candidates to be presented to customers. This approach is both flexible and scalable.

Search funnel.png
A typical search funnel, from query understanding to displaying results.

At Amazon Music, we have previously improved our ranking of the top-k candidates by applying learning-to-rank (LTR) models, which learn from customer feedback or actions (clicks, likes, adding to favorites, playback, etc.). We combine input signals from the query, context, customer preferences, and candidate features to train the models.

Related content
Models adapted from information retrieval deal well with noisy GPS input and can leverage map information.

However, these benefits apply only to the candidates selected during the retrieval phase. If the best candidate is not in the candidate set, it doesn’t matter how good our ranking model is; customers will not get what they want.

More recently, we have extended the learning-to-rank approach to include retrieval, in what we are calling learning-to-rank-and-retrieve (LTR&R). Where most existing retrieval models are static (deterministic), learning to retrieve is dynamic and leverages customer feedback.

Consequently, we advocate an approach to learning to retrieve that uses contextual multiarmed bandits, a form of reinforcement learning that optimizes the trade-off between exploring new retrieval strategies and exploiting known ones, in order to minimize “regret”.

In what follows, we review prior approaches to both retrieval and ranking and show how, for all of their success, they still have shortcomings that LTR&R helps address.

Candidate selection strategies

Structured search and query understanding

A common candidate retrieval strategy is full-text search, which indexes free-text documents as bags of words stored in an inverted index using term statistics to generate relevance scores (e.g., the BM25 ranking function). The inverted index maps words to documents containing those words.

Full-text search solves for many search use cases, especially when there is an expectation that the candidates for display (e.g., track titles or artist names) should bear a lexical similarity to the query.

Related content
Applications in product recommendation and natural-language processing demonstrate the approach’s flexibility and ease of use.

We can extend full-text search in a couple of ways. One is to bias the results using some measure of entity quality. For example, we can take the popularity of a music track into account when computing a candidate score such that the more popular of two tracks with identical titles will be more likely to make it into the top page.

We can also extend full-text search by applying it in the context of structured data (often referred to as metadata). For instance, fields in a document might contain entity categories (e.g., product types or topics) or entity attributes (such as brand or color) that a more elaborate scoring function (e.g., Lucene scoring) could take into account.

Structured search (SS) can be effectively combined with query understanding (QU), which maps query tokens to entity categories, attributes, or combinations of the two, later used as retrieval constraints. These methods often use content understanding to extract metadata from free text in order to tag objects or entities with categories and attributes stored as fields, adding structure to the underlying text.

Neural retrieval models

More recently, inspired by advances in representation learning, transformers, and large language models for natural-language processing (NLP), search engineers and scientists have turned their attention to vector search (a.k.a. embedding-based retrieval). Vector search uses deep-learning models to produce dense (e.g., sentence-BERT) as well as sparse (e.g., SPLADE) vector representations, called embeddings, that capture the semantic content of queries, contexts, and entities. These models enable information retrieval through fast k-nearest-neighbor (k-NN) vector similarity searches using exact and approximate nearest-neighbor (ANN) algorithms.

Related content
Thorsten Joachims answers 3 questions about the work that earned him the award.

Vector-and-hybrid (lexical + vector) search yields more relevant results than traditional approaches and runs faster on zero-shot IR models, according to the BEIR benchmark. In recommender systems, customer and session embeddings (as query/context) and entity embeddings are also used to personalize candidates in the retrieval stage. These documents can be further reranked by another LTR neural model in a multistage ranking architecture.

A memory index

Research suggests that users’ actions (e.g., query-click information) are the single most important field for retrieval, serving as a running memory of which entities have worked and which haven’t for a given query/context. In a cold-start scenario, we can even train a model that, when given an input document, generates questions that the document might answer (or, more broadly, queries for which the document might be relevant).

Related content
Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

These predicted questions (or queries) and scores are then appended to the original documents, which are indexed as predicted query-entity (Q2E) scores. Once query-entailed user actions on entities are captured, these computed statistics can replace predicted values, becoming actual Q2E scores that update the memory index used in ranking. As newly encountered queries show up, resulting from hits on other strategies, additional Q2E pairs and corresponding scores will be generated.

Real-world complications

In his article “Throwing needles into haystacks”, Daniel Tunkelang writes,

If you’re interested in a particular song, artist, or genre, your interaction with a search engine should be pretty straightforward. If you can express a simple search intent using words that map directly to structured data, you should reasonably expect the search application to understand what you mean and retrieve results accordingly.

However, as we will show, when building a product that serves millions of customers who express themselves in ways that are particular to their experiences and locales, we cannot reasonably expect queries “to express a search intent using words that map directly to structured data.”

Query processing.png
Processing of the query “tayler love” by a complex QU + SS retrieval system.

Let’s start by unpacking an example. Say we want to process the query “love” in a music search system. Even for a single domain (e.g., music/audio) there are many kinds of entities that could match this query, such as songs, artists, playlists, stations, and even podcasts. For each of these categories there could be hundreds and even thousands of possible candidates matching the keyword “love”. Beyond that, each category has different attributes that can also match the keyword (e.g., “love” maps to the genre “love songs”).

Customers may also expect to see related entities in the search results (e.g., artists related to a song returned). So while in the customer’s mind there is surely a main search intent, expressed via a keyword, there could be many possible mappings or interpretations that should be considered. Each of these has a likelihood of being correct, which would generate series of underlying structured searches, first to identify the possible targeted entities and then to bring along related or derived content.

Related content
Framework improves efficiency, accuracy of applications that search for a handful of solutions in a huge space of candidates.

As we have discovered, the crafting and maintenance of such a system is inherently non-scalable.

There is also the problem of compounding errors due to incorrect query understanding and/or content understanding. Category and attribute assignment to queries and entities, which typically uses a combination of human tagging and ML classification models, could be wrong or even completely missing. Furthermore, assignment values may not be binary. For example, “Taylor Swift” is clearly considered a pop artist, but some of her songs are also categorized as country music, alternative/indie, or indie folk.

Given the centrality of interpretation in selecting candidate results, the ability to learn from interactions with customers is essential to successful retrieval. Search applications based on QU+SS and/or FT search, however, usually use static query plans that cannot incorporate feedback in the retrieval stage.

On the other hand, while deep models show enormous promise, they also require significant investment and seem unlikely to completely replace keyword-based retrieval methods in the foreseeable future.

Learning to retrieve

In a world with infinite resources and no latency constraints, we wouldn’t need a retrieval funnel, and we might prefer to rank all possible candidates. But we don’t live in such a world. The reality is that deciding the right balance between increasing precision, usually by exploiting what we already know works, and increasing recall, by exploring more sources and increasing the number of candidates retrieved, is critical for search, ad platforms, and recommender systems. This is especially true in very dynamic applications such as music search, where context matters and new entities, categories, and attributes get added all the time.

And while it would be terrific if we could identify the single candidate selection strategy that produces an optimal top page for every query/context, in practice this is not achievable. The optimal candidate selection strategy depends on the query/context, but we do not know that dependency a priori. We need to learn to retrieve.

Related content
Two KDD papers demonstrate the power and flexibility of Amazon’s framework for “extreme multilabel ranking”.

One way to try to strike the right explore-exploit trade-off is to implement a multiarmed bandit (MAB) optimization, to learn a policy to select a subset of retrieval strategies (arms) that maximize the sum of stochastic rewards earned through a sequence of searches. That is, the policy should maximize the sum of the likelihoods that the expected results are present in the sets produced by such strategies, as later confirmed by user actions (such as clicking on a link).

The MAB approach uses reinforcement learning (RL) to draw more candidates from strategies that perform well while drawing fewer from underperforming strategies. In particular, for learning-to-retrieve, contextual multiarmed bandit algorithms are ideal, as they are designed to take the query/context features and action features (related to the candidate selection strategy) as input to maximize the reward while keeping healthy rate of exploration to minimize regret.

retrieval ensemble.png
Using reinforcement learning to blend podcast search results from different retrieval strategies.

For example, we expect that embeddings based on language models (i.e., a semantic strategy) will perform better for topic search, while the lexical strategy will be more useful for direct entity search (a.k.a. spearfishing queries).

Query/context features may include query information, such as language, type of query, QU slotting and intent classification, query length, etc.; demographic and profile information about your user; information about the current time, such as day of the week, weekend or not, morning or afternoon, holiday season or not, etc.; and historical (aggregate) data of user behavior, such as what genres of music this user has listened to the most.

Action features may include relevance/similarity scores; historical query-strategy performance and number of results; types of entities retrieved, e.g., newly added, popular, personalized, etc.; and information about the underlying retrieval source, e.g., lexical matching, text/graph embeddings, memory, etc.

The model learns a generalization based on these features and the combination of retrieval strategies that maximizes the reward. Finally, we use the union of results produced by the selected strategies to produce a single candidate list that bubbles up to the ranking layer.

LTR&R.png
Generic learning-to-rank-and-retrieve (LTR&R) architecture.

Summary

In conclusion, using query understanding (when available) and structured search is a good place to start when building search systems. By adding learning-to-rank, you can start to reap the benefits of factoring in customer feedback and improving the system’s quality. However, this is not sufficient to address the hard problems we observe in real-life applications like music search.

As an extension to the common retrieval-and-ranking phases present in the multitier IR architectures used in most search, ads, and recommender systems, we propose a generic learning-to-rank-and-retrieve (LTR&R) system architecture that comprises multiple candidate generators based on different retrieval strategies. Some produce well-known, exploitable results, like those based on our memory index, while others focus more on exploration, producing novel, riskier, or more-unexpected results that can increase the diversity of the feedback and provide counterfactual data.

This feedback cannot be collected by the static (i.e., fully deterministic) retrieval-and-ranking systems used nowadays. We also suggest using ML, and in particular RL, to optimize the selection of the subset of retrieval strategies and the number of candidates drawn from them, to maximize the likelihood of finding the expected result in such sets.

By incorporating customer feedback and using ML for LTR&R we can (1) simplify the search systems and (2) bubble up the best possible candidates for our customers. LTR&R is a promising path to solving both precision-oriented search and broad and ambiguous queries that require more recall and exploration.

Acknowledgments: Chris Chow, Adam Tang, Geetha Aluri, and Boris Lerner

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
SE, Stockholm
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. The Prime Video Sye Protocol team is looking for an Applied Scientist. This person will deliver features that automatically detect and prevent video quality issues before they reach millions of customers worldwide. You will lead the design of models that scale to very large quantities of video data across multiple dimensions. You will embody scientific rigor, designing and executing experiments to demonstrate the technical effectiveness and business value of your methods. You will work alongside engineering teams to deliver your research into production systems that ensure premium streaming experiences for customers globally. You will have demonstrated technical, teamwork and communication skills, and a motivation to deliver customer value from your research. Our team offers exceptional opportunities for you to grow your technical and non-technical skills and make a global impact. Key job responsibilities - Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement to solve complex video defect detection challenges. - Collaborate with software engineers to integrate successful experimental results into Prime Video wide processes and production systems that operate at scale with minimal computational overhead. - Communicate results and insights to both technical and non-technical audiences, including presentations and written reports to stakeholders across engineering, operations, and content teams. A day in the life Your typical day starts investigating overnight video quality alerts and developing breakthrough detection algorithms. You'll collaborate with engineering teams on production deployment, analyze video data to uncover quality patterns, and work with transformers and video language models. About the team You'll join a team focused on delivering premium video experiences through scientific innovation. We build machine learning systems that automatically detect video quality issues across our global streaming platform, collaborating closely with engineering, operations, and content teams to solve video analysis challenges while ensuring customers never experience poor quality. Our team partners with leading universities to develop solutions and advance computer vision and machine learning techniques. We value scientific rigor whilst staying customer-focused, encouraging both innovative and practical solutions that scale globally. There are opportunities for high-impact publications and patent development that advance the entire field.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.