From structured search to learning-to-rank-and-retrieve

Using reinforcement learning improves candidate selection and ranking for search, ad platforms, and recommender systems.

Most modern search applications, ad platforms, and recommender systems share a similar multitier information retrieval (IR) architecture with (at a minimum) a candidate selection or retrieval phase and a candidate ordering or ranking phase. Given a query and a context, the retrieval phase reduces the space of possible candidates from millions, sometimes billions, to (typically) hundreds or less. The ranking phase then fine-tunes the ordering of candidates to be presented to customers. This approach is both flexible and scalable.

Search funnel.png
A typical search funnel, from query understanding to displaying results.

At Amazon Music, we have previously improved our ranking of the top-k candidates by applying learning-to-rank (LTR) models, which learn from customer feedback or actions (clicks, likes, adding to favorites, playback, etc.). We combine input signals from the query, context, customer preferences, and candidate features to train the models.

Related content
Models adapted from information retrieval deal well with noisy GPS input and can leverage map information.

However, these benefits apply only to the candidates selected during the retrieval phase. If the best candidate is not in the candidate set, it doesn’t matter how good our ranking model is; customers will not get what they want.

More recently, we have extended the learning-to-rank approach to include retrieval, in what we are calling learning-to-rank-and-retrieve (LTR&R). Where most existing retrieval models are static (deterministic), learning to retrieve is dynamic and leverages customer feedback.

Consequently, we advocate an approach to learning to retrieve that uses contextual multiarmed bandits, a form of reinforcement learning that optimizes the trade-off between exploring new retrieval strategies and exploiting known ones, in order to minimize “regret”.

In what follows, we review prior approaches to both retrieval and ranking and show how, for all of their success, they still have shortcomings that LTR&R helps address.

Candidate selection strategies

Structured search and query understanding

A common candidate retrieval strategy is full-text search, which indexes free-text documents as bags of words stored in an inverted index using term statistics to generate relevance scores (e.g., the BM25 ranking function). The inverted index maps words to documents containing those words.

Full-text search solves for many search use cases, especially when there is an expectation that the candidates for display (e.g., track titles or artist names) should bear a lexical similarity to the query.

Related content
Applications in product recommendation and natural-language processing demonstrate the approach’s flexibility and ease of use.

We can extend full-text search in a couple of ways. One is to bias the results using some measure of entity quality. For example, we can take the popularity of a music track into account when computing a candidate score such that the more popular of two tracks with identical titles will be more likely to make it into the top page.

We can also extend full-text search by applying it in the context of structured data (often referred to as metadata). For instance, fields in a document might contain entity categories (e.g., product types or topics) or entity attributes (such as brand or color) that a more elaborate scoring function (e.g., Lucene scoring) could take into account.

Structured search (SS) can be effectively combined with query understanding (QU), which maps query tokens to entity categories, attributes, or combinations of the two, later used as retrieval constraints. These methods often use content understanding to extract metadata from free text in order to tag objects or entities with categories and attributes stored as fields, adding structure to the underlying text.

Neural retrieval models

More recently, inspired by advances in representation learning, transformers, and large language models for natural-language processing (NLP), search engineers and scientists have turned their attention to vector search (a.k.a. embedding-based retrieval). Vector search uses deep-learning models to produce dense (e.g., sentence-BERT) as well as sparse (e.g., SPLADE) vector representations, called embeddings, that capture the semantic content of queries, contexts, and entities. These models enable information retrieval through fast k-nearest-neighbor (k-NN) vector similarity searches using exact and approximate nearest-neighbor (ANN) algorithms.

Related content
Thorsten Joachims answers 3 questions about the work that earned him the award.

Vector-and-hybrid (lexical + vector) search yields more relevant results than traditional approaches and runs faster on zero-shot IR models, according to the BEIR benchmark. In recommender systems, customer and session embeddings (as query/context) and entity embeddings are also used to personalize candidates in the retrieval stage. These documents can be further reranked by another LTR neural model in a multistage ranking architecture.

A memory index

Research suggests that users’ actions (e.g., query-click information) are the single most important field for retrieval, serving as a running memory of which entities have worked and which haven’t for a given query/context. In a cold-start scenario, we can even train a model that, when given an input document, generates questions that the document might answer (or, more broadly, queries for which the document might be relevant).

Related content
Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

These predicted questions (or queries) and scores are then appended to the original documents, which are indexed as predicted query-entity (Q2E) scores. Once query-entailed user actions on entities are captured, these computed statistics can replace predicted values, becoming actual Q2E scores that update the memory index used in ranking. As newly encountered queries show up, resulting from hits on other strategies, additional Q2E pairs and corresponding scores will be generated.

Real-world complications

In his article “Throwing needles into haystacks”, Daniel Tunkelang writes,

If you’re interested in a particular song, artist, or genre, your interaction with a search engine should be pretty straightforward. If you can express a simple search intent using words that map directly to structured data, you should reasonably expect the search application to understand what you mean and retrieve results accordingly.

However, as we will show, when building a product that serves millions of customers who express themselves in ways that are particular to their experiences and locales, we cannot reasonably expect queries “to express a search intent using words that map directly to structured data.”

Query processing.png
Processing of the query “tayler love” by a complex QU + SS retrieval system.

Let’s start by unpacking an example. Say we want to process the query “love” in a music search system. Even for a single domain (e.g., music/audio) there are many kinds of entities that could match this query, such as songs, artists, playlists, stations, and even podcasts. For each of these categories there could be hundreds and even thousands of possible candidates matching the keyword “love”. Beyond that, each category has different attributes that can also match the keyword (e.g., “love” maps to the genre “love songs”).

Customers may also expect to see related entities in the search results (e.g., artists related to a song returned). So while in the customer’s mind there is surely a main search intent, expressed via a keyword, there could be many possible mappings or interpretations that should be considered. Each of these has a likelihood of being correct, which would generate series of underlying structured searches, first to identify the possible targeted entities and then to bring along related or derived content.

Related content
Framework improves efficiency, accuracy of applications that search for a handful of solutions in a huge space of candidates.

As we have discovered, the crafting and maintenance of such a system is inherently non-scalable.

There is also the problem of compounding errors due to incorrect query understanding and/or content understanding. Category and attribute assignment to queries and entities, which typically uses a combination of human tagging and ML classification models, could be wrong or even completely missing. Furthermore, assignment values may not be binary. For example, “Taylor Swift” is clearly considered a pop artist, but some of her songs are also categorized as country music, alternative/indie, or indie folk.

Given the centrality of interpretation in selecting candidate results, the ability to learn from interactions with customers is essential to successful retrieval. Search applications based on QU+SS and/or FT search, however, usually use static query plans that cannot incorporate feedback in the retrieval stage.

On the other hand, while deep models show enormous promise, they also require significant investment and seem unlikely to completely replace keyword-based retrieval methods in the foreseeable future.

Learning to retrieve

In a world with infinite resources and no latency constraints, we wouldn’t need a retrieval funnel, and we might prefer to rank all possible candidates. But we don’t live in such a world. The reality is that deciding the right balance between increasing precision, usually by exploiting what we already know works, and increasing recall, by exploring more sources and increasing the number of candidates retrieved, is critical for search, ad platforms, and recommender systems. This is especially true in very dynamic applications such as music search, where context matters and new entities, categories, and attributes get added all the time.

And while it would be terrific if we could identify the single candidate selection strategy that produces an optimal top page for every query/context, in practice this is not achievable. The optimal candidate selection strategy depends on the query/context, but we do not know that dependency a priori. We need to learn to retrieve.

Related content
Two KDD papers demonstrate the power and flexibility of Amazon’s framework for “extreme multilabel ranking”.

One way to try to strike the right explore-exploit trade-off is to implement a multiarmed bandit (MAB) optimization, to learn a policy to select a subset of retrieval strategies (arms) that maximize the sum of stochastic rewards earned through a sequence of searches. That is, the policy should maximize the sum of the likelihoods that the expected results are present in the sets produced by such strategies, as later confirmed by user actions (such as clicking on a link).

The MAB approach uses reinforcement learning (RL) to draw more candidates from strategies that perform well while drawing fewer from underperforming strategies. In particular, for learning-to-retrieve, contextual multiarmed bandit algorithms are ideal, as they are designed to take the query/context features and action features (related to the candidate selection strategy) as input to maximize the reward while keeping healthy rate of exploration to minimize regret.

retrieval ensemble.png
Using reinforcement learning to blend podcast search results from different retrieval strategies.

For example, we expect that embeddings based on language models (i.e., a semantic strategy) will perform better for topic search, while the lexical strategy will be more useful for direct entity search (a.k.a. spearfishing queries).

Query/context features may include query information, such as language, type of query, QU slotting and intent classification, query length, etc.; demographic and profile information about your user; information about the current time, such as day of the week, weekend or not, morning or afternoon, holiday season or not, etc.; and historical (aggregate) data of user behavior, such as what genres of music this user has listened to the most.

Action features may include relevance/similarity scores; historical query-strategy performance and number of results; types of entities retrieved, e.g., newly added, popular, personalized, etc.; and information about the underlying retrieval source, e.g., lexical matching, text/graph embeddings, memory, etc.

The model learns a generalization based on these features and the combination of retrieval strategies that maximizes the reward. Finally, we use the union of results produced by the selected strategies to produce a single candidate list that bubbles up to the ranking layer.

LTR&R.png
Generic learning-to-rank-and-retrieve (LTR&R) architecture.

Summary

In conclusion, using query understanding (when available) and structured search is a good place to start when building search systems. By adding learning-to-rank, you can start to reap the benefits of factoring in customer feedback and improving the system’s quality. However, this is not sufficient to address the hard problems we observe in real-life applications like music search.

As an extension to the common retrieval-and-ranking phases present in the multitier IR architectures used in most search, ads, and recommender systems, we propose a generic learning-to-rank-and-retrieve (LTR&R) system architecture that comprises multiple candidate generators based on different retrieval strategies. Some produce well-known, exploitable results, like those based on our memory index, while others focus more on exploration, producing novel, riskier, or more-unexpected results that can increase the diversity of the feedback and provide counterfactual data.

This feedback cannot be collected by the static (i.e., fully deterministic) retrieval-and-ranking systems used nowadays. We also suggest using ML, and in particular RL, to optimize the selection of the subset of retrieval strategies and the number of candidates drawn from them, to maximize the likelihood of finding the expected result in such sets.

By incorporating customer feedback and using ML for LTR&R we can (1) simplify the search systems and (2) bubble up the best possible candidates for our customers. LTR&R is a promising path to solving both precision-oriented search and broad and ambiguous queries that require more recall and exploration.

Acknowledgments: Chris Chow, Adam Tang, Geetha Aluri, and Boris Lerner

Related content

US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Research Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Analyze complex healthcare data to identify patterns, trends, and insights • Develop and validate statistical methodologies • Collaborate with Applied Scientists to support model development efforts • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for data analysis, data curation, and model evaluation • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in statistics, knowledge of the complications of longitudinal healthcare data, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to prepare data, build ML models, validate model predictions and ensure statistical rigor in our approach. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
IL, Tel Aviv
We are looking for a Data Scientist to join our Prime Video team in Israel, focusing on personalizing customer experiences through Search and Recommendations. Our team leverages Machine Learning (ML) to deliver tailored content discovery, helping millions of customers find the entertainment they love. You will work on large-scale experimentation, measurement frameworks, and data-driven decision-making that directly shapes how customers interact with Prime Video. Key job responsibilities - Design metrics frameworks and evaluation systems to measure the quality, performance, and reliability of algorithmic solutions - Lead the design, execution, and analysis of A/B tests to validate product hypotheses and quantify customer impact - Communicate analytical findings and recommendations clearly to both technical teams and business stakeholders, driving data-informed decisions - Partner with Applied Scientists, Software Engineers, and Product Managers to define requirements, evaluate models, and drive data-informed product decisions - Act as the subject matter expert for data structures, metrics definitions, and analytical best practices - Identify opportunities for improving customer experience through deep-dive analyses of user behavior and algorithm performance
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team is building next-generation personalization systems powered by Large Language Models. We are tackling novel research challenges to help customers discover products they'll love - at Amazon scale and latency requirements. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Science Manager, you will lead a team of scientists working at the frontier of LLM-based personalization. You will set the technical vision, drive the research agenda, and ensure your team delivers production-ready solutions. You will hire, mentor, and develop world-class scientists while fostering a culture of innovation and scientific rigor. You will partner closely with engineering and product teams to translate ambitious research into customer-facing impact, and represent your team's work to senior leadership. Please visit https://www.amazon.science for more information.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Key job responsibilities - Work backwards from customer problems to research and develop novel machine learning solutions for music and podcast recommendations. Through A/B testing and online experiments done hand-in-hand with engineering teams, you'll implement and validate your ideas and solutions. - Advocate solutions and communicate results, insights and recommendations to stakeholders and partners. - Produce innovative research on recommender systems that shapes the field and meets the high standards of peer-reviewed publications. You'll cement your team's reputation as thought leaders pioneering new recommenders. Stay current with advancements in the field, adapting latest in literature to build efficient and scalable models A day in the life Lead innovation in AI/ML to shape Amazon Music experiences for millions. Develop state of the art models leveraging and advancing the latest developments in machine learning and genAI. Collaborate with talented engineers and scientists to guide research and build scalable models across our audio portfolio - music, podcasts, live streaming, and more. Drive experiments and rapid prototyping, leveraging Amazon's data at scale. Innovate daily alongside world-class teams to delight customers worldwide through personalization. About the team The team is responsible for models that underly Amazon Music’s recommendations content types (music, podcasts, audiobooks), sequencing models for algorithmic stations across mobile, web and Alexa, ranking models for the carousels and Page strategy on Amazon Music surfaces, and Query Understanding for conversational flow and recommendations. You will collaborate with a team of product managers, applied scientists and software engineers delivering meaningful recommendations, personalized for each of the millions of customers using Amazon Music globally. As a scientist on the team, you will be involved in every aspect of the development lifecycle, from idea generation and scientific research to development and deployment of advanced models. You will work closely with engineering to realize your scientific vision.
US, WA, Seattle
We are seeking a Senior Applied Scientist to join our team in developing pioneering AI research, Generative AI, Agentic AI, Large Language Models (LLMs), Diffusion and Flow Models, and other advanced Machine Learning and Deep Learning solutions for Amazon Selection and Catalog Systems, within the AI Lab Team. This role offers a unique opportunity to work on AI research and AI products that will shape the future of online shopping experiences. Our team operates at the forefront of AI research and development, working on challenges that directly impact millions of customers worldwide. We push the boundaries of AI at both the foundational and application layers. As a Senior Applied Scientist, you will have the chance to experiment with LLMs and deep learning techniques, apply your research to solve real-world problems at an unprecedented scale, and collaborate with experienced scientists to contribute to Amazon's scientific innovation. Join us in redefining the future of shopping. Your work will directly influence how customers interact with the world's largest online store. Key job responsibilities - Design and implement novel AI solutions for Amazon catalog of products - Develop and train state-of-the-art LLMs, Diffusion Models, and other Generative AI models - Build and deploy autonomous AI Agents in Amazon production ecosystem - Scale AI models to handle billions of diverse products across multiple languages and geographies - Conduct research in areas such as Autonomous AI Agents, Generative AI, Language Modeling, Multi-modality Computer Vision, Diffusion Models, Reinforcement Learning - Collaborate with cross-functional teams to integrate AI models into Amazon's production ecosystem - Contribute to the scientific community through publications and conference presentations