Generalizing diffusion modeling to multimodal, multitask settings

A novel loss function and a way to aggregate multimodal input data are key to dramatic improvements on some test data.

One of the lessons of the machine learning revolution has been that, perhaps counterintuitively, training a model on multiple data types or multiple tasks can improve performance relative to single-purpose models. A model trained on multiple languages, for instance, can learn distinctions that are subtle in one language but pronounced in another, and a model trained on, say, object segmentation may learn properties of visual scenes that help it with depth perception.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

The advantages of multitask and multimodal training, however, are relatively unexplored in the context of diffusion models, which are responsible for some of the most impressive recent results in generative AI. Diffusion models are trained to incrementally denoise samples to which noise has been incrementally added. The result is that feeding them random noisy inputs will yield randomized outputs that are semantically coherent.

In a paper we presented at the International Conference on Learning Representations (ICLR), we describe a general approach to building multimodal, multitask diffusion models. On the input side, we use modality-specific encoders to map data to a shared diffusion space; on the output side, we use multiple task-specific decoders to map general representations to specific outputs.

MM:MT diffusion architecture.png
The architecture of the multimodal, multitask diffusion model.

The paper presents a theoretical analysis of the problem of generalizing diffusion models to the multimodal, multitask setting, and on the basis of that analysis, it proposes several modifications of the loss function typically used for diffusion modeling. In experiments, we tested our approach on four different multimodal or multitask data sets, and across the board, it was able to match or improve performance relative to single-purpose models.

Minding modality

In the standard diffusion modeling scenario, the model’s encoder maps inputs to a representational space; within that space, a forward process iteratively adds noise to the input representation, and a reverse process iteratively removes it.

Related content
Diffusion modeling within the representational space of a variational autoencoder enables state-of-the-art results.

The loss function includes two terms that measure the distance between the probability distribution of the forward process and the learned probability distribution of the reverse process. One term compares the marginal distributions for the two processes in the forward direction: that is, it compares the likelihoods that any given noisy representation will occur during the forward process. The other term compares the posterior representations of the reverse process — that is, the likelihood that a given representation at time t-1 preceded the representation at time t. We modify these terms so that the distributions are conditioned on the modality of the data — that is, the distributions can differ for data of different modalities.

Both of these loss terms operate in the representational space: they consider the likelihood of a particular representation given another representation. But we also have a term in the loss function that looks at the probability that an input of a given modality led to a particular representation. This helps ensure that the reverse process will correctly recover the modality of the data.

MM:MT diffusion loss.png
The loss function for the multimodal-, multitask diffusion model is the sum of four sublosses, L0–L3. L0 compares the noise distributions of the forward and reverse processes, conditioned on the input data (X). L1 compares posterior distributions, also conditioned on the input data. L2 is the new term in our setting, which induces the model to recover input modalities.

Multimodal means

To fuse the multimodal information used to train the model, we consider the transition distribution in the forward direction, which determines how much noise to add to a given data representation. To compute the mean of that distribution, we define a weighted average of the multimodal input encodings, where the weights are based on input modality.

The transition probability of the forward process. The probability of z sub t, conditioned on z sub t minus 1 and X (the input data) is set equal to a normal distribution whose mean is defined by z sub t minus 1 plus the weighted sum of the encodings of the inputs, sorted by modality. The variance is 1 minus a fraction consisting of a time-varying weight over N (the number of different modalities) plus 1.
The equation for computing the mean and variance of the transition probability of the forward process in the multimodal, multitask setting. N is the number of modalities; wt(i) are the weights assigned to different modalities; xi is the input data; and Ei is the input encoder.

On the basis of the transition probabilities of the forward process, we can now compute the marginal distributions of noisy representations and the posterior distributions of the reverse process (corresponding to sublosses L0 and L1 in the loss function):

The equation for the marginal distribution. The probability of z sub t, conditioned on z sub zero and X (the input data), is set equal to the normal distribution whose mean is the sum of z sub zero (with a coefficient) and a weighted sum of input encoding, sorted by modality. The variance includes a time-varying term (1 minus a time-varying variable), which increases the noise at each time step.
The marginal distribution for the noisy representation zt in the multitask setting (corresponding to subloss L0, above).
The equation for the posterior mean includes a noisy data representation (z sub t), modified by constant factors, from which is subtracted t weighted sum of the encodings of input data of different modalities  (E sub i of x sub i).
The equation for the mean of the posterior distribution, in the multitask setting.

Evaluation

We tested our approach on four tasks, two of which were multitask, and two of which were multimodal. The multitask experiments were both in the vision domain: one involved jointly generating visual data and the associated segmentation masks, and the other was a novel multitask pretraining task in which a diffusion generation model also learned fill in masked regions of input images.

Related content
Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

The multimodal experiments involved images and other modalities. In one, the model was trained to jointly generate images and their labels, and in the other, the model learned to jointly generate images and their embeddings in a representational space — for instance, CLIP embeddings.

The image segmentation was and embedding generation tasks were chiefly intended as qualitative demonstrations. But the masked pretraining task and the joint generation of images and labels allowed for quantitative evaluation.

Two sets of three images each. In both sets, the first image is of a street scene; the second image is the target segmentation, with objects in the scene masked out in different colors; and the third is the segmentation generated by the model, which is essentially indistinguishable from the target.
Qualitative examples of the segmentation mask generation tasks, with the source image (left), the ground truth segmentation (center), and the masks generated by our method.

We evaluated the masked pretraining model on the task of reconstructing the masked image regions, using learned perceptual image patch similarity (LPIPS) as a metric. LPIPS measures the similarity between two images according to their activations of selected neurons within an image recognition model. Our approach dramatically outperformed the baselines, which were trained only on the reconstruction task, not (simultaneously) on the diffusion task. In some cases, our model’s error rate was almost an order of magnitude lower than the baseline models’.

Two sets of three images each, including a source image, the same image with several black squares of fixed size randomly superimposed upon it, and the model's reconstruction of the complete image.
Our model’s re-creations of masked image regions.

On the task of jointly generating images and labels, our model’s performance was comparable to that of the best baseline vision-language model, with slightly higher precision and slightly lower recall.

For these initial experiments, we evaluated multitask and multimodal performance separately, and each experiment involved only two modalities or tasks. But at least prospectively, the power of our model lies in its generalizability, and in ongoing work, we are evaluating on more than two modalities or tasks at a time and on simultaneous multimodal and multitask training. We are eager to see the result.

Related content

US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement whole body control methods for balance, locomotion, and dexterous manipulation - Utilize state-of-the-art in methods in learned and model-based control - Create robust and safe behaviors for different terrains and tasks - Implement real-time controllers with stability guarantees - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers
TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.