How Amazon Chime's noise cancellation works

Combining classic signal processing with deep learning makes method efficient enough to run on a phone.

PercepNet is one of the core technologies of Amazon Chime's Voice Focus feature. It is designed to suppress noise and reverberation in the speech signal, in real time, without using too many CPU cycles. This makes it usable in cellphones and other power-constrained devices. 

At Interspeech 2020, PercepNet finished second in its category (real-time processing) in the Deep Noise Suppression Challenge, despite using only 4% of a CPU core, while another Amazon Chime algorithm, PoCoNet, finished first in the offline-processing category. In this post, we'll look into the principles that make PercepNet work. For more details, you can also refer to our Interspeech paper.

Despite operating in real time, with low complexity, PercepNet can still provide state-of-the-art speech enhancement. Like most recent speech enhancement algorithms, PercepNet uses deep learning, but it applies it in a different way. Rather than have a deep neural network (DNN) do all the work, PercepNet tries to have it do as little work as possible.

Speech enhancement and STFT

Before getting into any deep learning, let's look at the job we'll be asking our machine learning model to perform. Let's consider a simple synthetic example. We start from the clean speech sample below:

We then add some non-stationary car noise on top of it:

The goal here is to take the noisy audio and make it sound as good as possible — ideally, close to the original clean audio. The standard way to represent the problem — both pre-deep learning and post-deep learning — is to use the short-time Fourier transform (STFT).

That means chopping up the signal into overlapping windows and computing the frequency content for each window. For each window of N samples (N discrete measurements of the signal amplitude), we obtain N/2 spectral magnitudes, along with their associated phases. We will refer to each output point as a frequency bin. Let's see what the magnitude of the STFT looks like for our clean signal (top) and noisy signal (bottom).

percepnet_spectrograms.jpg
The spectrograms above show the frequency content of an audio clip. The horizontal axis is time, the vertical axis is frequency, and the color represents the amount of energy at a particular time, for a particular frequency, using a log scale.

From the noisy STFT, many algorithms try to estimate the clean magnitude of each frequency while retaining the phase — which is much harder to estimate — from the noisy signal. For now, let's assume we have a magic model (an oracle) that's able to do a perfect mapping from noisy spectral magnitudes to clean. This is why we started from a synthetic example, so we can compute the oracle output. Based on oracle magnitudes but using the noisy phase, we can reconstruct the speech signal:

Certainly not bad, but also far from perfect. The noise is still audible as a form of roughness in the speech. This is due to the error in the phase, which we took from the noisy signal. While the ear is essentially insensitive to the absolute phase, what we perceive here is the inconsistency of the phase across frames. In other words, the way in which the phase changes over time still does matter.

Another issue for real-time, power-constrained operation is the number of frequency bins whose amplitudes we need to estimate. Assuming we use 20-millisecond windows, the STFT bins will be spaced 50 Hz apart. If we want to enhance all frequencies up to 20 kHz (the upper limit of human hearing), then our neural network will have to estimate 400 amplitudes, which is very computationally expensive.

Where do we go from here? If we want to improve quality, then we could also estimate phase. This is the no-compromise route taken by PoCoNet, which can get around the added complexity because it’s optimized to run on a GPU. For real-time applications on power-constrained devices, however, we can't realistically expect to have a very good phase estimator.

A perceptually relevant representation

If we want good speech quality, and we want our algorithm to run in real time on a CPU without instantly draining the battery, then we need to find a way to simplify the problem. We can do that by making the following assumptions:

  1. the general shape of the speech spectrum (a.k.a. the spectral envelope) is smooth; and 
  2. we perceive it with a nonlinear frequency resolution, corresponding to the human ear’s auditory filters (a.k.a. critical bands)

In other words, (1) the speech spectrum tends not to have sharp discontinuities, and (2) the human auditory system perceives low frequencies with higher resolution than high frequencies.

We can follow both of those assumptions by representing the speech spectrum using bands spaced according to equivalent rectangular bandwidth (ERB). ERB-spaced bands divide the spectrum into bands of increasing width, capturing coarser spectral information as frequency increases, much the way the human auditory system does.

Because multiple STFT bins are assigned to each band, the spectral representation is smoother: any discontinuity in frequency is averaged out.

Nonlinearly spaced bands make our model much simpler. Instead of 400 frequency bins, we need only 34 bands. In practice, we model these bands as overlapping filters, which are most responsive to the frequencies at the centers of the bands (the tips of the triangles below) and decreasingly responsive to frequencies farther from the center (the sides of the triangles; note the 50% overlap between bands):

bands.png

For each of the bands above, we compute a gain between 0 and 1; then, all we need to do is interpolate those band gains and we're done. Now, let's listen to how this would sound — still using the oracle for band magnitudes:

Our complexity went down, but so did the quality. The roughness we noticed previously is now even more obvious and sounds a bit like heavy distortion. It's not that surprising, since we are still changing only the magnitude spectrum, but with only 34 degrees of freedom rather than 400.

So what are we missing here? The missing piece is that the ear doesn't only perceive the spectral envelope of the signal; it also perceives whether the signal is made of tones (voiced sounds), noise (unvoiced sounds), or a mix of the two. Vowels are mostly composed of tones (harmonics) at multiples of a fundamental frequency (the pitch), whereas many consonants (such as the /s/ phoneme) are mostly noise-like. 

Our enhanced speech sounds rough because the tonal vowels contain more noise than they should. To enhance our tones, we can use a time-domain technique called comb filtering. Comb filtering is often an undesired effect in which room reverberation boosts or attenuates frequencies at regular intervals. But by carefully tuning our comb filter to the pitch of the voice we're trying to enhance, we can keep all the tones and remove most of the noise. Below is an example of the frequency response of the comb filter for a pitch of 200 Hz.

pitch.png

The pitch is the period at which a periodic signal (nearly) repeats itself. Pitch estimation is a hard problem, especially in the noisy conditions we have here. To estimate the pitch, we try to match a signal with past versions of itself, finding the period T that maximizes the correlation between x(n) and x(n-T). We then use dynamic programming (the Viterbi algorithm) to find a pitch trajectory that is consistent (e.g. no large jumps) over time.

Since we often want to retain at least some of the noise, we can simply do a mix between the noisy audio and the comb-filtered audio to get exactly the tone/noise ratio we want. By doing the mixing in the frequency domain, we can control that mix on a band-by-band basis, even though the comb filter is computed in the time domain. The exact ratios (or filtering strengths) to use for the mixing can be adjusted in such a way that the ratio of tones to noise in the output is about the same as it was in the clean speech. This is what our oracle (using the optimal strengths) now sounds like with comb filtering:

There’s still a little roughness, but our quality is already better than that of our spectral-magnitude oracle, despite using far fewer parameters. It now seems that we're as close to the original properties of the speech as we could get with our model. So what else can we do to further improve quality? The answer is simple: we cheat! 

To be more specific, we can cheat the human auditory system a bit by further attenuating the frequency bands that are still too noisy. Our speech will deviate slightly from the correct spectral envelope, but the ear will not notice that too much. It will just notice the noise less. This kind of post-filtering has been used in speech codecs since the 1980s but (as far as we know) not in speech enhancement systems. Adding the post-filter to our oracle gives us the following:

We're now quite close to the perfect clean speech. At this point, our limiting factor will most certainly be the DNN model and not the representation we use. The good thing is that our DNN has to estimate only 34 band gains (between 0 and 1) and 34 comb-filtering strengths (also between 0 and 1). This is much easier than estimating 400 magnitudes/gains — and possibly also 400 phases.

Adding a DNN

So far, we’ve assumed a perfect model for predicting band gains (the oracle). In practice, we need to use a DNN. But all the work we did in the previous section was meant to make the DNN design as boring as possible.

Since we replaced our initial 400 frequency bins with just 34 bands, there's no reason to use convolutional layers across frequency. Instead, we just go with convolutional layers across time and — most importantly — recurrent layers that provide longer-term memory to the system. We found that simple gated recurrent units (GRUs) work well, but long-short-term-memory networks (LSTMs) would probably have worked as well.

dnn_model.png
DNN model

In our DNN modelf is an input feature vector that contains all the band-based spectral information we need. The outputs are the band gains b and the comb-filtering strengths b. Now all we need to do is train our network using hours of clean speech to which we add various levels of noise and reverberation. Since we have the clean speech, we can compute the optimal (oracle) gains and filtering strengths and use them as training targets. Our complete system using the trained DNN sounds like this:

Obviously, it does not sound as good as the last oracle — no enhancement DNN is perfect — but it's still a big improvement over the noisy input speech. Our Interspeech 2020 Deep Noise Suppression Challenge samples page provides some examples of how PercepNet performs in real conditions.

Using it in real time

The DNN model above contains about eight million weights. For each new window, we use each weight exactly once, which means eight million multiply-add operations per window. With 20-millisecond windows and 50% overlap, we have 100 windows per second of speech, so 800 million multiply-add operations per second. 

Thankfully, DNNs tend to be quite robust to small perturbations, so we can quantize all our weights to just eight bits with a negligible effect on perceived audio quality. Thanks to SIMD instructions on modern CPUs, this makes it possible to run our network really efficiently. On a modern laptop CPU, it takes less than 5% of one core to run PercepNet in real time.

To be useful in real-time communications applications, PercepNet should not add too much delay. The seemingly arbitrary choice of 20-millisecond windows with 50% overlap means that it consumes audio 10 milliseconds at a time. This is good because most audio codecs (including Opus, which is used in WebRTC) encode audio in 20-millisecond packets. So we can run the algorithm exactly twice per packet without the PercepNet block size causing an increase in delay. 

There are, of course, some delays we cannot avoid. The overlap between windows means that the STFT itself requires 10 milliseconds for reconstruction. On top of that, we typically allow the DNN to look two windows (20 millseconds) into the future, so it can make better decisions. This gives us a total of 30 milliseconds extra delay from the algorithm, which is acceptable in most scenarios.

If you would like to know more about the details of PercepNet, you can read our Interspeech 2020 paper. The idea behind PercepNet is quite versatile and could be applied to other problems, including acoustic echo control and beamforming post-filtering. In future posts, we will see how we can make PercepNet very efficient on CPUs and even how to run it as Web Assembly (WASM) code inside web browsers for WebRTC-based applications.

Research areas

Related content

US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Lead the planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 1-2 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Santa Clara
Amazon Web Services (AWS) is assembling an elite team of world-class scientists and engineers to pioneer the next generation of AI-driven development tools. Join the Amazon Kiro LLM-Training team and help create groundbreaking generative AI technologies including Kiro IDE and Amazon Q Developer that are transforming the software development landscape. Key job responsibilities As a key member of our team, you'll be at the forefront of innovation, where cutting-edge research meets real-world application: - Push the boundaries of reinforcement learning and post-training methodologies for large language models specialized in code intelligence - Invent and implement state-of-the-art machine learning solutions that operate at unprecedented Amazon scale - Deploy revolutionary products that directly impact the daily workflows of millions of developers worldwide - Break new ground in AI and machine learning, challenging what's possible in intelligent code assistance - Publish and present your pioneering work at premier ML and NLP conferences (NeurIPS, ICML, ICLR , ACL, EMNLP) - Accelerate innovation by working directly with customers to rapidly transition research breakthroughs into production systems About the team The AWS Developer Agents and Experiences (DAE) team is reimagining the builder experience through generative AI and foundation models. We're leveraging the latest advances in AI to transform how engineers work from IDE environments to web-based tools and services, empowering developers to tackle projects of any scale with unprecedented efficiency. Broadly, AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a dynamic, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation