How AWS uses graph neural networks to meet customer needs

Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

Graphs are an information-rich way to represent data. A graph consists of nodes — typically represented by circles — and edges — typically represented as line segments between nodes. In a knowledge graph, for instance, the nodes represent entities, and the edges represent relationships between them. In a social graph, the nodes represent people, and an edge indicates that two of those people know each other.

At Amazon Web Services, the use of machine learning (ML) to make the information encoded in graphs more useful to our customers has been a major research focus. In this post, we’ll showcase a variety of graph ML applications that customers have developed in collaboration with AWS scientists, from malicious-account detection and automated document processing to knowledge-graph-assisted drug discovery and protein property prediction.

Introduction to graph learning

Graphs can be homogenous, meaning the nodes represent a single type of entity (say, airports), and the edges represent a single type of relationship (say, scheduled flights). Or they can be heterogeneous, meaning they integrate multiple types of relationships among different entities, such as a graph of customers and products connected by both purchase histories and interests, or a knowledge graph of drugs, diseases, genes, and biological pathways connected by relationships such as indication and regulation. Nodes are often associated with data features, such as a product’s price or text description.

Heterogeneous knowledge graph
In a heterogenous knowledge graph, nodes can represent different classes of objects.

Graph neural networks

In the past 10 years, deep learning has revolutionized a host of AI applications, from natural-language processing to speech synthesis to computer vision.

Graph neural networks (GNNs) extend the performance benefits of deep learning to graph data. Like other popular neural networks, a GNN model has a series of layers, which progress toward higher levels of abstraction.

For instance, the first layer of a GNN computes a representation — or embedding — of the data represented by each node in the graph, while the second layer computes a representation of each node based on the prior embedding and the embeddings of the node’s nearest neighbors. In this way, every layer expands the scope of a node’s embedding, from one-hop neighbors, to two-hop neighbors, and for some applications, even further.

Graph neural network
A demonstration of how graph neural networks use recursive embedding to condense all the information in a two-hop graph into a single vector. Relationships between entities — such as "produce" and "write" in a movie database (red and yellow arrows, respectively) — are encoded in the level-0 embeddings of the entities themselves (red and orange blocks).
Stacy Reilly

GNN tasks

The individual node embeddings can then be used for node-level tasks, such as predicting properties of a node. The embeddings can also be used for higher-level inferences. For instance, using representations across a pair of nodes or across all nodes from the graph, GNNs can perform link-level or graph-level tasks, respectively.

Related content
Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

In this section, we demonstrate the versatility of GNNs across all three levels of tasks and examine how our customers are using GNNs to tackle a variety of problems.

Node-level tasks

Using GNNs, we can infer the behavior of an individual node in the graph based on the relationships it has to other nodes. One common task is node classification, where the objective is to infer nodes’ missing labels by looking at their neighbors’ labels and features. This method is used in applications such as financial-fraud detection, publication categorization, and disease classification.

In AWS, we have successfully used Amazon Neptune and Deep Graph Library (DGL) to apply GNN node representation learning to customers’ fraud detection use cases. For a large e-commerce sports gadgets customer, for instance, scientists in the Amazon Machine Learning Solutions Lab successfully used GNN models implemented in DGL to detect malicious accounts among billions of registered accounts.

Fraud graph.png
An example of how a graph representation can be used to detect fraud.

These malicious accounts were created in large quantities to abuse usage of promotional codes and block general public access to the vendor’s best-selling items. Using data from e-commerce sites, we built a massive heterogenous graph in which the nodes represented accounts and other entities, such as products purchased, and the edges connected nodes based on usage histories. To identify malicious accounts, we trained a GNN model to propagate labels from accounts that were known to be malicious to unlabeled accounts.

With this method, we were able to detect 10 times as many malicious accounts as a previous rule-based detection method could. Such performance improvements could not be achieved by traditional methods for doing machine learning on tabular datasets, such as CatBoost, which take only account features as inputs, without considering the relationships between accounts captured by the graph.

Besides applications for inherently relational, graph-structured data, such as social-network and citation-network data, there have been extensions of GNNs for data normally presented in Euclidean space, such as images and texts. By transforming data in Euclidean space to graphs based on spatial proximity, GNNs can solve problems that are typically solved by convolutional neural networks (CNNs) and recurrent neural networks (RNNs), which were designed to handle visual data and sequential data.

Related content
New method enables two- to 14-fold speedups over best-performing predecessors.

For example, researchers have explored GNN models to improve the accuracy of information extraction, a task typically handled by RNNs. GNNs turn out to be better at incorporating the nonlocal and nonsequential relationships captured by graph representations of word dependencies.

In a recent collaboration, the Amazon Machine Learning Solutions Lab and United Airlines developed a customized GNN model (DocGCN) to improve the accuracy of automatic information extraction from self-uploaded passenger documents, including travel documents, COVID-19 test results, and vaccine cards. The team built a graph for each scanned travel document that connected textual units based on their spatial proximities and orientations in the document.

Then, the DocGCN model reasoned over the relationships among textual units (nodes of the graph) to improve the identification of relevant textual information. DocGCN also generalized to complex forms with different formats by leveraging graphs to capture relationships between texts in tables, key-value pairs, and paragraphs. This improvement expedited the automation of international travel readiness verification.

Link-level tasks

Another important learning task in graphs is link prediction, which is central to applications such as product or ad recommendation and friendship suggestion. Given two nodes and a relation, the goal is to determine whether the nodes are connected by the relation.

Typically, the prediction is provided by a decoder that consumes the embeddings of the source and destination nodes, as in the work on knowledge graph embedding at scale that members of our team presented at SIGIR 2020. The decoder is trained to correctly predict existing edges in the graph.

DRKG.png
The high-level structure of DRKG. Numerals indicate the number of different types of relationships between classes of entities; terms between parentheses are examples of those relationships.
Credit: Glynis Condon

An exciting opportunity area in this context is drug discovery. AWS has recently provided a drug-repurposing knowledge graph (DRKG) that employs link prediction to identify new targets for existing drugs. Built by scientists at AWS, DRKG is a comprehensive biological knowledge graph that relates human genes, chemical compounds, biological processes, drug side effects, diseases, and symptoms. By performing link prediction around COVID-19 in DRKG, researchers were able to identify 41 drugs that were potentially effective against COVID-19 — 11 of which were already in clinical trials.

AWS also publicly released this solution, built by leveraging DRKG, as the COVID-19 Knowledge Graph (CKG). CKG organizes and represents the information in the COVID-19 Open Research Dataset (CORD-19), enabling fast discovery and prioritization of drug candidates. It can also be employed to identify papers relevant to COVID-19, thereby reducing the scale of human effort required to study, summarize, and interpret findings relevant to the pandemic.

Graph-level tasks

Graph-level tasks involve the analysis of large collections of small and independent graphs. A chemical library of organic compounds is a common example of a graph-level application, where each organic compound is represented as a graph of atoms connected by chemical bonds. Graph-level analyses of chemical libraries are often vital for drug development and discovery use cases; applications include predicting organic compounds’ chemical properties and predicting biological activities such as binding affinity to protein targets.

Code graph.png
An example of a program dependence graph.

Another example of data that can benefit from graph-level representation is code snippets in programming languages. A piece of code can be represented by a program dependence graph (PDG), where variables, operators, and statements are nodes connected by their dependencies (links).

At PAKDD 2021, we presented a new method for using GNNs to represent code snippets. Recently, we have been using that method to identify similar code snippets, to find opportunities to make code more modular and easier to maintain.

GNNs can also be used to encode global properties of the underlying systems and incorporate them into graph embeddings, in a way that is difficult with other deep-learning methods. We recently worked with scientists from Janssen Biopharmaceuticals to predict the function of proteins from their 3-D structure, which is useful for research and development in the pharmaceutical and biotech industries.

A protein is composed of a sequence of amino acids folded in a particular way. We developed a graph representation of proteins in which each node was an amino acid, and the interactions between amino acids in the folded protein structure determined whether two nodes were linked or not.

Protein graphs.png
Examples of graph representations of proteins.

This allowed us to encode fine-grained biological information, including the distance, angle, and direction of contact between neighboring amino acid residues. When we combined a GNN trained on these graph representations with a model trained to parse billions of protein sequences, we improved performance on various protein function prediction tasks of real-world importance.

Graph-level tasks for GNNs have different data-engineering requirements than the previous tasks. Node-level and link-level tasks usually operate on a single giant graph, whereas graph-level tasks operate on a large number of independent small graphs.

To help customers scale GNNs up for graph-level tasks, we developed a cloud-based architecture that leverages the highly performant open-source GNN library DGL, the ML resource orchestration tool SageMaker, and Amazon DocumentDB for managing graph data.

Getting started on your GNN journey

Related content
Approach that uses a hierarchical graph neural network improves F-score by 49% relative to predecessors.

In this article, we presented a few examples of GNN applications at all three levels of graph-related tasks to showcase the value of GNNs to various enterprise and research problems. AWS provides several options for customers looking to build and deploy GNN-powered ML solutions. Customers looking to get started quickly can use Amazon Neptune ML to build GNN models directly on graph data stored in Amazon Neptune without writing any code. Amazon Neptune ML can train models to tackle node-level and link-level tasks like those described above. Customers looking to get more hands-on can implement GNN models using DGL on Amazon SageMaker. In the meantime, we will continue to advance the science of GNNs to build more products and solutions to make GNNs more accessible to all our customers.

Acknowledgments: Guang Yang, Soji Adeshina, Jasleen Grewal, Miguel Romero Calvo, Suchitra Sathyanarayana

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.