How Prime Video uses machine learning to ensure video quality

Detectors for block corruption, audio artifacts, and errors in audio-video synchronization are just three of Prime Video’s quality assurance tools.

Streaming video can suffer from defects introduced during recording, encoding, packaging, or transmission, so most subscription video services — such as Amazon Prime Video — continually assess the quality of the content they stream.

Manual content review — known as eyes-on-glass testing — doesn’t scale well, and it presents its own challenges, such as variance in reviewers’ perceptions of quality. More common in the industry is the use of digital signal processing to detect anomalies in the video signal that frequently correlate with defects.

Block Corruption Detection.gif
The initial version of Amazon Prime Video's block corruption detector uses a residual neural network to produce a map indicating the probability of corruption at particular image locations, binarizes that map, and computes the ratio between the corrupted area and the total image area.

Three years ago, the Video Quality Analysis (VQA) group in Prime Video started using machine learning to identify defects in captured content from devices, such as gaming consoles, TVs, and set-top boxes, to validate new application releases or offline changes to encoding profiles. More recently, we’ve been applying the same techniques to problems such as real-time quality monitoring of our thousands of channels and live events and to analyzing new catalogue content at scale.

Our team at VQA trains computer vision models to watch video and spot issues that may compromise the customer viewing experience, such as blocky frames, unexpected black frames, and audio noise. This enables us to process video at the scale of hundreds of thousands of live events and catalogue items.

An interesting challenge we face is the lack of positive cases in training data due to the extremely low prevalence of audiovisual defects in Prime Video offerings. We tackle this challenge with a dataset that simulates defects in pristine content. After using this dataset to develop detectors, we validate that the detectors transfer to production content by testing them on a set of actual defects.

An example of how we introduced audio clicks into clean audio

Clean signal.png
Waveform of the clean audio.
Clean audio

Impaired signal.png
Waveform of the audio with clicks added.
Impaired audio with artificial clicks

Spectrogram of the clean audio signal.png
Spectrogram of the clean audio.
Spectrogram of the impaired audio signal after artifical clicks have been introduced.png
Spectrogram of the audio with clicks added.

We have built detectors for 18 different types of defect, including video freezes and stutters, video tearing, synchronization issues between audio and video, and problems with caption quality. Below, we look closely at three examples of defects: block corruption, audio artifacts, and audiovisual-synchronization problems.

Block corruption

One disadvantage of using digital signal processing for quality analysis is that it can have trouble distinguishing certain types of content from content with defects. For example, to a signal processor, crowd scenes or scenes with high motion can look like scenes with block corruption, in which impaired transmission causes the displacement of blocks of pixels within the frame or causes blocks of pixels to all take the same color value.

An example of block corruption

To detect block corruption, we use a residual neural network, a network designed so that higher layers explicitly correct errors missed by the layers below (the residual error). We replace the final layer of a ResNet18 network with a 1x1 convolution (conv6 in the network diagram).

ResNet architecture.png
The architecture of the block corruption detector.

The output of this layer is a 2-D map, where each element is the probability of block corruption in a particular image region. This 2-D map is dependent upon the size of the input image. In the network diagram, a 224 x 224 x 3 image passes to the network, and the output is a 7 x 7 map. In the example below, we pass an HD image to the network, and the resultant map is 34 x 60 pixels.

In the initial version of this tool, we binarized the map and calculated the corrupted-area ratio as corruptionArea = areaPositive/totalArea. If this ratio exceeded some threshold (0.07 proved to work well), then we marked the frame as having block corruption. (See animation, above.)

In the current version of the tool, however, we move the decision function into the model, so it’s learned jointly with the feature extraction.

Audio artifact detection

“Audio artifacts” are unwanted sounds in the audio signal, which may be introduced through the recording process or by data compression. In the latter case, this is the audio equivalent of a corrupted block. Sometimes, however, artifacts are also introduced for creative reasons.

To detect audio artifacts in video, we use a no-reference model, meaning that during training, it doesn’t have access to clean audio as a standard of comparison. The model, which is based on a pretrained audio neural network, classifies a one-second audio segment as either no defect, audio hum, audio hiss, audio distortion, or audio clicks.

Currently, the model achieves a balanced accuracy of 0.986 on our proprietary simulated dataset. More on the model can be found in our paper “A no-reference model for detecting audio artifacts using pretrained audio neural networks”, which we presented at this year’s IEEE Winter Conference on Applications of Computer Vision.

An example of video with distorted audio

Audio/video sync detection

Another common quality issue is the AV sync or lip sync defect, when the audio is not in line with the video. Issues during broadcasting, reception, and playback can knock the audio and video out of sync.

To detect lip sync defects, we have built a detector — which we call LipSync — based on the SyncNet architecture from the University of Oxford.

The input to the LipSync pipeline is a four-second video fragment. It passes to a shot detection model, which identifies shot boundaries; a face detection model, which identifies the faces in each frame; and a face-tracking model, which identifies faces in successive frames as belonging to the same person.

Preprocessing pipeline-cropped.png
Preprocessing pipeline to extract face tracks — four-second clips centered on a single face.

The outputs of the face-tracking model — known as face tracks — and the correlated audio then pass to the SyncNet model, which aggregates across the face tracks to decide whether the clip is in sync, out of sync, or inconclusive, meaning there are either no faces/face tracks detected or there are an equal number of in-sync and out-of-sync predictions.

Future work

These are a select few of the detectors in our arsenal. In 2022, we continue to work on refining and improving our algorithms. In ongoing work, we’re using active learning — which algorithmically selects particularly informative training examples — to continually retrain our deployed models.

To generate synthetic datasets, we are researching EditGan, a new method that allows more precise control over the outputs of generative adversarial networks (GANs). We are also using our custom AWS cloud-native applications and SageMaker implementations to scale our defect detectors, to monitor all live events and video channels.

Research areas

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation