How the Lean language brings math to coding and coding to math

Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

This post is an adaptation of a keynote address that Leo de Moura delivered at the International Conference on Computer Aided Verification (CAV), in July 2024.

LEAN logo.png
The Lean logo.

In 2013, I launched the Lean project with the goal of bridging the gap between automated and interactive theorem provers. Since its inception, Lean has seen unparalleled adoption in the mathematical community, surpassing previous efforts in formalized mathematics. Lean 4, the latest version, is implemented in Lean itself and is also a fully fledged, extensible programming language with robust IDE support, package management, and a thriving ecosystem.

In 2023, Sebasian Ullrich and I founded the Lean Focused Research Organization (FRO), a nonprofit dedicated to advancing Lean and supporting its community. The Lean project embraces a philosophy that promotes decentralized innovation, empowering a diverse community of researchers, developers, and enthusiasts to collaboratively push the boundaries of mathematical practice and software development. In this blog post, we will provide a brief introduction to the project and describe how it is used at AWS.

A brief introduction to Lean

Lean is an open-source, extensible, functional programming language and interactive theorem prover that makes writing correct and maintainable code easy. Lean programming primarily involves defining types and functions, allowing users to focus on the problem domain and its data rather than on coding details. Lean has four primary use cases: formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

Formal mathematics

Lean allows mathematicians to work with advanced mathematical structures using syntax that feels natural to them. The math community recognizes its usefulness: for instance, Fields medalists Peter Scholze and Terence Tao used Lean to confirm their new results; Quanta Magazine has lauded Lean as one of the biggest breakthroughs in mathematics, and it has been featured in numerous popular scientific and academic publications, including the Wired magazine article “The effort to build the mathematical library of the future”. Recently, DeepMind used Lean to build an AI engine that met the silver-medal standard at the International Math Olympiad.

As of July 2024, the Lean Mathematical Library has received contributions from over 300 mathematicians and contains 1.58 million lines of code, surpassing other formal-mathematics systems in use. This remarkable growth has come despite Lean’s concision and youth: it’s at least a decade younger than comparable libraries.

Software and hardware verification

Lean’s combination of formal verification, user interaction, and mathematical rigor makes it invaluable for both software and hardware verification. Lean is a system for programming your proofs and proving your programs. An additional benefit is that Lean produces efficient code, and its extensibility features, originally designed for mathematicians, are also highly convenient for creating abstractions when writing clean and maintainable code. Its benefits extend to any system requiring exceptional accuracy and security, including industries such as aerospace, cryptography, web services, autonomous vehicles, biomedical systems, and medical devices. Later on, we will provide several examples of Lean's applications at AWS.

AI for math and code synthesis

Lean is popular with groups developing AI for mathematics and code synthesis. One of the key reasons is that Lean formal proofs are machine checkable and can be independently audited by external proof checkers. Additionally, Lean's extensibility allows users to peer into the system internals, including data structures for representing proofs and code. This capability is also used to automatically generate animations from Lean proofs.

AI researchers are leveraging large language models (LLMs) to create Lean formal proofs and automatically translate prose into formalized mathematics. OpenAI has released lean-gym, a reinforcement learning environment based on Lean. Harmonic used Lean in the development of its Mathematical Superintelligence Platform (MSI), an AI model designed to guarantee accuracy and avoid hallucinations. Meta AI created an AI model that has solved 10 International Mathematical Olympiad problems, and DeepMind has formalized a theoretical result related to AI safety in Lean. Additionally, LeanDojo is an open-source project using LLMs to automate proof construction in Lean.

Lean's unique combination of machine-checkable proofs, system introspection, and extensibility makes it an ideal tool for advancing AI research in mathematics and code synthesis. The synergy between LLMs and Lean formal proofs is emphasized in Terence Tao's colloquium lecture at the American Mathematical Society, “Machine Assisted Proof”; in the Scientific American article “AI will become mathematicians' co-pilot”; and in the New York Times article “A.I. Is coming for mathematics, too.”

Math and CS education

Millions of people learn mathematics as students and use it throughout their careers. Since its inception, the Lean project has supported students' mathematical-reasoning needs and enabled a more diverse population to contribute to the fields of math and computer science. Numerous educational resources are available for learning Lean, including interactive computer games such as the Natural Number Game, computer science and mathematics textbooks, university courses, and on-demand tutorials. The Lean FRO is committed to expanding Lean’s educational content and envisions a future where children use Lean as a playground for learning mathematics, progressing at their own paces and receiving instantaneous feedback, similar to how many have learned to code.

A quick tour of Lean

Lean combines programming and formal verification. Let's take a quick tour through a small example to see how we write code in Lean and prove properties about that code.

Writing code in Lean

First, let's define a simple function that appends two lists:

def append (xs ys : List a) : List a :=
  match xs with
  | [] => ys
  | x :: xs => x :: append xs ys

This function is defined using pattern matching. For the base case, appending an empty list [] to ys results in ys. The notation x :: xs represents a list with head x and tail xs. For the recursive case, appending x :: xs to ys results in x :: append xs ys. Additionally, the append function is polymorphic, meaning it works with lists of any type a.

Extensible syntax

The notation x :: xs used above is not built into Lean but is defined using the infixr command:

infixr:67 " :: " => List.cons

The infixr command defines a new infix operator x :: xs, denoting List.cons x xs. This command is actually a macro implemented using Lean's hygienic macro system. Lean's extensible syntax allows users to define their own domain-specific languages. For example, Verso, the Lean documentation-authoring system, is implemented in Lean using this mechanism. Verso defines alternative concrete syntaxes that closely resemble Markdown and HTML.

Proving properties about code

Next, we'll prove a property about our append function: that the length of the appended lists is the sum of their lengths.

theorem append_length (xs ys : List a)
        : (append xs ys).length = xs.length + ys.length := by
  induction xs with
  | nil => simp [append]
  | cons x xs ih => simp [append, ih]; omega

Here, theorem introduces a new theorem named append_length. The statement (append xs ys).length = xs.length + ys.length is what we want to prove. The by ... block contains the proof. In this proof,

  • induction xs with initiates a proof by induction on xs;
  • the nil case proves the base case using simp, the Lean simplifier. The parameter append instructs the simplifier to expand append’s definition; and
  • the cons x xs ih case proves the inductive step where ih is the inductive hypothesis. It also uses simp and omega, which complete the proof using arithmetical reasoning.

In this proof, induction, simp, and omega are tactics. Tactics, which transform one state of the proof into another, are key to interactive theorem proving in Lean. Users can inspect the states of their proofs using the Lean InfoView, a panel in the IDE. The InfoView is an interactive object that can be inspected and browsed by the user. In the following picture, we see the state of our proof before the simp tactic at line 10. Note that the proof state contains all hypotheses and the goal (append (x :: xs) ys).length = (x :: xs).length + ys.length, which remains to be proved.

LEAN example.png
The state of the proof before the simp tactic at line 10, as visualized in the Lean InfoView.

How Lean is used at AWS

At AWS, Lean is used in several open-source projects to address complex verification and modeling challenges. These projects not only highlight the practical applications of Lean in different domains but also emphasize AWS's commitment to open-source development and collaboration. We cover four key projects: Cedar, LNSym, and SampCert, whose Lean source code is already available on GitHub, and AILean, which is exploring the relationship between LLMs and formal mathematics and whose code is not open source yet. 

Cedar: an open-source policy language and evaluation engine 

Cedar is an open-source policy language and evaluation engine. Cedar enables developers to express fine-grained permissions as easy-to-understand policies enforced in their applications and to decouple access control from application logic. Cedar supports common authorization models such as role-based access control and attribute-based access control. It is the first policy language built from the ground up to be verified formally using automated reasoning and tested rigorously using differential random testing.

The Cedar project uses Lean to create an executable formal model of each core component of the Cedar runtime (such as the authorization engine) and static-analysis tools (such as the type checker). This model serves as a highly readable specification, allowing the team to prove key correctness properties using Lean.

Lean was chosen for modeling Cedar due to its fast runtime, extensive libraries, IDE support, and small trusted computing base (TCB). The fast runtime enables efficient differential testing of Cedar models. The libraries provide reusable verified data structures and tactics built by the open-source community. Lean’s small TCB allows Cedar to leverage these contributions confidently, as Lean checks their correctness, requiring trust only in Lean’s minimal proof-checking kernel.

LNSym: Symbolic simulation for cryptographic verification

LNSym is a symbolic simulator for Armv8 native-code programs. It’s currently under development, with a focus on enabling automated reasoning of cryptographic machine-code programs. Many cryptographic routines are written in assembly to optimize performance and security on the underlying processor. LNSym aims to reduce the cost of verifying cryptographic routines, particularly block ciphers and secure hashes, ultimately empowering cryptography developers to formally reason about their native-code programs.

LNSym uses Lean as a specification language to model the Arm instruction semantics and cryptographic protocols and as a theorem prover for reasoning about these artifacts. Since Lean programs are executable, the specifications achieve a high degree of trust through thorough conformance testing. Lean orchestrates proofs such that the heavy and often tedious lifting is done automatically, using decision procedures like SAT solvers or custom domain-specific tactics. When proof automation fails, users can employ Lean as an interactive theorem prover. This combination of interactive and automated theorem proving ensures that progress on verification tasks is not hindered by the limitations of proof automation.

SampCert: formally verified differential-privacy primitives

SampCert is an open-source library of formally verified differential-privacy primitives used by the AWS Clean Rooms Differential Privacy service for its fast and sound sampling algorithms. Using Lean, SampCert provides the only verified implementation of the discrete Gaussian sampler and the primitives of zero concentrated differential privacy.

Although SampCert focuses on software, its verification relies heavily on Mathlib, the Lean Mathematical Library. The verification of code addressing practical problems in data privacy depends on the formalization of mathematical concepts from Fourier analysis to number theory and topology.

AILean: AI for math and math for AI

AILean is exploring the relationship between LLMs and formal mathematics in collaboration with the Technology Innovation Institute (TII). This exploration works in both directions: AI for math and math for AI. In AILean, LLMs are used to enhance proof automation and user experience in formal mathematics. LLMs can analyze theorem statements and existing proof steps, suggesting relevant lemmas, definitions, or tactics to guide users in completing proofs. They can also identify common mistakes or inconsistencies, proposing corrections or alternative approaches that avoid dead ends and thereby improving the proof development process.

Takeaways

Lean is a complex system, but its correctness relies only on a small trusted kernel. Moreover, all proofs and definitions can be exported and independently audited and checked. This is a crucial feature for both the mathematical and software verification communities because it eliminates the trust bottleneck. It doesn't matter who you are; if Lean checked your proof, the whole world can build on top of it. This enables large groups of mathematicians who have never met to collaborate and work together. Additionally, it allows users to extend Lean without fearing the introduction of soundness bugs that could compromise the logical consistency of the system.

Lean's extensibility enables customization, which was particularly important during its first ten years, when resources were limited. Lean’s extensibility allowed the community to extend the system without needing to synchronize with its developers. Self-hosting, or implementing Lean in Lean, also ensured that users can access all parts of the system without having to learn a different programming language. This makes it easy and convenient to extend Lean. Packages such as ProofWidgets and SciLean are excellent examples of user-defined extensions that leverage these features.

The FRO model introduced by Convergent Research has been instrumental in supporting Lean and helping it transition to a self-sufficient foundation. The Lean project has grown significantly, and driving it forward would have been difficult without Convergent Research’s efforts to secure philanthropic support. Just as foundations like the Rust and Linux Foundations are vital for the success and sustainability of open-source projects, the support of Convergent Research has been critical for Lean's ongoing progress.

To learn more about Lean, visit the website.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.