How we built Cedar with automated reasoning and differential testing

The new development process behind Amazon Web Services’ Cedar authorization-policy language.

Cedar is a new authorization-policy language used by the Amazon Verified Permissions and AWS Verified Access managed services, and we recently released it publicly. Using Cedar, developers can write policies that specify fine-grained permissions for their applications. The applications then authorize access requests by calling Cedar’s authorization engine. Because Cedar policies are separate from application code, they can be independently authored, updated, analyzed, and audited. 

Related content
CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

We want to assure developers that Cedar’s authorization decisions will be correct. To provide that assurance, we follow a two-part process we call verification-guided development when we’re working on Cedar. First, we use automated reasoning to prove important correctness properties about formal models of Cedar’s components. Second, we use differential random testing to show that the models match the production code. In this blog post we present an overview of verification-guided development for Cedar.

A primer on Cedar

Cedar is a language for writing and enforcing authorization policies for custom applications. Cedar policies are expressed in syntax resembling natural language. They define who (the principal) can do what (the action) on what target (the resource) under which conditions (when)?

To see how Cedar works, consider a simple application, TinyTodo, designed for managing task lists. TinyTodo uses Cedar to control who can do what. Here is one of TinyTodo’s policies:

// policy 1
permit(principal, action, resource)
when {
	resource has owner && resource.owner == principal
};

This policy states that any principal (a TinyTodo User) can perform any action on any resource (a TinyTodo List) as long as the resource’s creator, defined by its owner attribute, matches the requesting principal. Here’s another TinyTodo Cedar policy:

// policy 2
permit (
	principal,
	action == Action::"GetList",
	resource
)
when {
	principal in resource.editors || principal in resource.readers
};

This policy states that any principal can read the contents of a task list (Action::"GetList") if that principal is in either the list’s readers group or its editors group. Here is a third policy:

// policy 3
forbid (
	principal in Team::"interns",
	action == Action::"CreateList",
	resource == Application::"TinyTodo"
);

This policy states that any principal who is an intern (in Team::"interns") is forbidden from creating a new task list (Action::"CreateList") using TinyTodo (Application::"TinyTodo").

Related content
Meet Amazon Science’s newest research area.

When the application needs to enforce access, as when a user of TinyTodo issues a command, it only needs to make a corresponding request to the Cedar authorization engine. The authorization engine evaluates the request in light of the Cedar policies and relevant application data. If it returns decision Allow, TinyTodo can proceed with the command. If it returns decision Deny, TinyTodo can report that the command is not permitted.

How do we build Cedar to be trustworthy?

Our work on Cedar uses a process we call verification-guided development to ensure that Cedar’s authorization engine makes the correct decisions. The process has two parts. First, we model Cedar’s authorization engine and validator in the Dafny verification-aware programming language. With Dafny, you can write code, and you can specify properties about what the code is meant to do under all circumstances. Using Dafny’s built-in automated-reasoning capabilities we have proved that the code satisfies a variety of safety and security properties.

Second, we use differential random testing (DRT) to confirm that Cedar’s production implementation, written in Rust, matches the Dafny model’s behavior. We generate millions of diverse inputs and feed them to both the Dafny model and the production code. If both versions always produce the same output, we have a high degree of confidence that the implementation matches the model.

Cedar figure.png
Building Cedar using automated reasoning and differential testing.

Proving properties about Cedar authorization

 Cedar’s authorization algorithm was designed to be secure by default, as exemplified by the following two properties:

  • explicit permit — permission is granted only by individual permit policies and is not gained by error or default;
  • forbid overrides permit — any applicable forbid policy always denies access, even if there is a permit policy that allows it.

With these properties, sets of policies are easier to understand. Policy authors know that permit policies are the only way access is granted, and forbid policies decline access regardless of whether it is explicitly permitted.

Related content
Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

Given an authorization request, the Cedar authorization engine takes each Cedar policy and evaluates it after substituting the application request parameters into the principal, action and resource variables. For example, for the request principal= User::”Alice”, action=Action::”GetList”, and resource=List::”AliceList”, substituting for the variables in policy 1 would produce the expression List::”AliceList” has owner && List::”AliceList”.owner == User::”Alice”. If this expression evaluates to true, we say the request satisfies the policy. The authorization engine collects the satisfied forbid and permit policies into distinct sets and then makes its decision.

We model the authorization engine as a Dafny function and use Dafny’s automated-reasoning capabilities to state and prove the explicit-permit and forbid-overrides-permit properties. To see how this helps uncover mistakes, let’s consider a buggy version of the authorization engine:

function method isAuthorized(): Response { // BUGGY VERSION
	var f := forbids();
	var p := permits();
	if f != {} then
		Response(Deny, f)
	else
		Response(Allow, p)
}

The logic states that if any forbid policy is applicable (set f is not the empty set {}), the result should be Deny, thus overriding any applicable permit policies (in set p). Otherwise, the result is Allow. While this logic correctly reflects the desired forbid-overrides-permit property, it does not correctly capture explicit permit. Just because there are no applicable forbid policies doesn’t mean there are any applicable permit policies. We can see this by specifying and attempting to prove explicit permit in Dafny:

// A request is explicitly permitted when a permit policy is satisfied
predicate IsExplicitlyPermitted(request: Request, store: Store) {
	exists p ::
		p in store.policies.policies.Keys &&
		store.policies.policies[p].effect == Permit &&
		Authorizer(request, store).satisfied(p)
}
lemma AllowedIfExplicitlyPermitted(request: Request, store: Store)
ensures // A request is allowed if it is explicitly permitted
	(Authorizer(request, store).isAuthorized().decision == Allow) ==>
	IsExplicitlyPermitted(request, store)
{ ... }

A Dafny predicate is a function that takes arguments and returns a logical condition, and a Dafny lemma is a property to be proved. The IsExplicitlyPermitted predicate defines the condition that there is an applicable permit policy for the given request. The AllowedIfExplicitlyPermitted lemma states that a decision of Allow necessarily means the request was explicitly permitted. This lemma does not hold for the isAuthorized definition above; Dafny complains that A postcondition might not hold on this return path and points to the ensures clause.

Here is the corrected code:

function method isAuthorized(): Response {
	var f := forbids();
	var p := permits();
	if f == {} && p != {} then
		Response(Allow, p)
	else
		Response(Deny, f)
}

Now a response is Allow only if there are no applicable forbid policies, and there is at least one applicable permit policy. With this change, Dafny automatically proves AllowedIfExplicitlyPermitted. It also proves forbid overrides permit (not shown).

Related content
To mark the occasion of the eighth Federated Logic Conference (FloC), Amazon’s Byron Cook, Daniel Kröning, and Marijn Heule discussed automated reasoning’s prospects.

We have used the Cedar Dafny models to prove a variety of properties. Our most significant proof is that the Cedar validator, which confirms that Cedar policies are consistent with the application’s data model, is sound: if the validator accepts a policy, evaluating the policy should never result in certain classes of error. When carrying out this proof in Dafny, we found a number of subtle bugs in the validator’s design that we were able to correct.

We note that Dafny models are useful not just for automated reasoning but for manual reasoning, too. The Dafny code is much easier to read than the Rust implementation. As one measure of this, at the time of this writing the Dafny model for the authorizer has about one-sixth as many lines of code as the production code. Both Cedar users and tool implementers can refer to the Dafny models to quickly understand precise details about how Cedar works.

Differential random testing

Once we have proved properties about the Cedar Dafny model, we want to provide evidence that they hold for the production code, too, which we can do by using DRT to show that the model and the production code behave the same. Using the cargo fuzz random-testing framework, we generate millions of inputs — access requests, accompanying data, and policies — and send them to both the Dafny model engine and the Rust production engine. If the two versions agree on the decision, then all is well. If they disagree, then we have found a bug.

The main challenge with using DRT effectively is to ensure the necessary code coverage by generating useful and diverse inputs. Randomly generated policies are unlikely to mention the same groups and attributes chosen in randomly generated requests and data. As a result, pure random generation will miss a lot of core evaluation logic and overindex on error-handling code. To resolve this, we wrote several input generators, including ones that take care to generate policies, data, and requests that are consistent with one another, while also producing policies that use Cedar’s key language constructs. As of this writing, we run DRT for six hours nightly and execute on the order of 100 million total tests.

Related content
Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

The use of DRT during Cedar’s development has discovered corner cases where there were discrepancies between the model and the production code, making it an important tool in our toolkit. For example, there was a bug in a Rust package we were using for IP address operations; the Dafny model exposed an issue in how the package was parsing IP addresses. Since the bug is in an external package, we fixed the problem within our code while we wait for the upstream fix. We also found subtle bugs in the Cedar policy parser, in how the authorizer handles missing application data, and how namespace prefixes on application data (e.g., TinyTodo::List::”AliceList”) are interpreted.

Learn more

In this post we have discussed the verification-guided development process we have followed for the Cedar authorization policy language. In this process, we model Cedar language components in the Dafny programming language and use Dafny’s automated-reasoning capabilities to prove properties about them. We check that the Cedar production code matches the Dafny model through differential random testing. This process has revealed several interesting bugs during development and has given us greater confidence that Cedar’s authorization engine makes correct decisions.

To learn more, you can check out the Cedar Dafny models and differential-testing code on GitHub. You can also learn more about Dafny on the Dafny website and the Cedar service on the Cedar website.

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Sunnyvale
The Region Flexibility Engineering (RFE) team builds and leverages foundational infrastructure capabilities, tools, and datasets needed to support the rapid global expansion of Amazon's SOA infrastructure. Our team focuses on robust and scalable architecture patterns and engineering best practices, driving adoption of ever-evolving and AWS technologies. RFE is looking for a passionate, results-oriented, inventive Data Scientist to refine and execute experiments towards our grand vision, influence and implement technical solutions for regional placement automation, cross-region libraries, and tooling useful for teams across Amazon. As a Data Scientist in Region Flexibility, you will work to enable Amazon businesses to leverage new AWS regions and improve the efficiency and scale of our business. Our project spans across all of Amazon Stores, Digital and Others (SDO) Businesses and we work closely with AWS teams to advise them on SDO requirements. As innovators who embrace new technology, you will be empowered to choose the right highly scalable and available technology to solve complex problems and will directly influence product design. The end-state architecture will enable services to break region coupling while retaining the ability to keep critical business functions within a region. This architecture will improve customer latency through local affinity to compute resources and reduce the blast radius in case of region failures. We leverage off the sciences of data, information processing, machine learning, and generative AI to improve user experience, automation, service resilience, and operational efficiency. Key job responsibilities As an RFE Data Scientist, you will work closely with product and technical leaders throughout Amazon and will be responsible for influencing technical decisions and building data-driven automation capabilities in areas of development/modeling that you identify as critical future region flexibility offerings. You will identify both enablers and blockers of adoption for region flex, and build models to raise the bar in terms of understanding questions related to data set and service relationships and predict the impact of region changes and provide offerings to mitigate that impact. About the team The Regional Flexibility Engineering (RFE) organization supports the rapid global expansion of Amazon's infrastructure. Our projects support Amazon businesses like Stores, Alexa, Kindle, and Prime Video. We drive adoption of ever-evolving and AWS and non-AWS technologies, and work closely with AWS teams to improve AWS public offerings. Our organization focuses on robust and scalable solutions, simple to use, and delivered with engineering best practices. We leverage and build foundational infrastructure capabilities, tools, and datasets that enable Amazon teams to delight our customers. With millions of people using Amazon’s products every day, we appreciate the importance of making our solutions “just work”.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.