ICASSP: Michael I. Jordan’s “alternative view on AI”

In a plenary talk, the Berkeley professor and Distinguished Amazon Scholar will argue that AI research should borrow concepts from economics and focus on social collectives.

Intelligence is notoriously hard to define, but when most people (including computer scientists) think about it, they construe it on the model of human intelligence: an information-processing capacity that allows an autonomous agent to act upon the world.

Michael I. Jordan, the Pehong Chen Distinguished Professor in both the computer science and statistics departments at UC Berkeley, and a Distinguished Amazon Scholar.

But Michael I. Jordan, the Pehong Chen Distinguished Professor in both the computer science and statistics departments at the University of California, Berkeley, and a Distinguished Amazon Scholar, thinks that that’s too narrow a concept of intelligence.

“Swarms of ants are intelligent, in the sense that they can build ant hills and share food, even though each individual ant is not thinking about hills or sharing,” Jordan says. “Economists have taken this perspective further, with their focus on the tasks accomplished by markets. Accomplishing those tasks is by some definition a reflection of intelligence. A market that brings food into, say, New York every day is an intelligent entity. It's akin to a brain, and it’s important to remember that a brain is a loosely coupled collection of neurons that are each performing relatively simple functions. Analogously, a bunch of loosely coupled decisions made by producers, suppliers, and consumers constitute a market that is a form of intelligence. A grand challenge is to marry this kind of intelligence with the form of intelligence that arises from learning from data.”

Jordan argues that distributed, social intelligence is better suited to meeting human needs than the type of autonomous general intelligence we associate with the Terminator movies or Marvel’s Ultron. By the same token, he says, AI’s goals should be formulated at the level of the collective, not the level of the individual agent.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“A good engineer is supposed to think about the overall goal of the system you’re building,” Jordan says. “If your overall goal is diffuse — create intelligence, and somehow it will solve problems — that's not good enough.

“What machine learning and network data do is bring people together in new ways to share data, to share services with each other, and to create new kinds of markets, new kinds of social collectives. Building systems like that is a perfectly reasonable engineering goal. Real-world examples are easy to find in domains such as transportation, commerce, health care. Those are not best analyzed as some super-intelligence coming in to help you solve problems. Rather, they're best analyzed as, Hey, we're designing a new system that has new kinds of data flows that were never present before and there’s a need to aggregate and integrate those flows in various ways, with the overall goal of serving individuals according to their utilities.”

New signals

At this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Jordan will elaborate on these ideas in a plenary talk titled “An alternative view on AI: Collaborative learning, incentives, and social welfare”. ICASSP might seem like an odd venue for so expansive a talk, but Jordan argues — again — that that’s only if you rely on an overly restricted definition.

Related content
Alexa scientist Ariya Rastrow on the blurring boundaries between acoustic processing and language understanding.

“You can make signal processing very narrow, and then it's, how do you do compression, how do you get high-fidelity recordings, and so on,” he says. “But those are all the engineering challenges of the past. In emerging domains, the notion of what constitutes a signal is broader. Signals are often coming from humans, and they often have semantic content. Moreover, when people interact with an economic relationship in mind, they signal to each other in various ways: What am I willing to pay for this? And what is someone else willing to pay? Markets are full of signals. Machine learning can create new vocabularies for signaling. 

“So part of the story here is going to be to say, hey, signal-processing folks, it's not just about the data and the algorithms and the statistics. It's about a broader conception of signals. Signal processing isn’t just about the processing and streaming of bits but about what these bits are being used for and what market forces they can set in motion. I definitely would hope to convince signal-processing people to think ambitiously about what the scope of the field can be.”

Statistical contract theory

One of the tools that Jordan and his Berkeley research group are using to make markets more intelligent is what they call statistical contract theory. Classical contract theory investigates markets with information asymmetries: for instance, a seller doesn’t know how potential buyers value a particular good, but the buyers themselves do.

Michael I. Jordan on AI, statistical contract theory, and prediction-powered inference.

The goal is to devise a menu of contracts that balances out the asymmetries. An example is tiered-class seating on airplanes: some customers will contract to pay higher fares for more room and better food; some customers will contract to forego those advantages in exchange for lower fares. The seller doesn’t have to know in advance which population is which; the populations are self-selecting.

In statistical contract theory, Jordan explains, the contracts have statistical analyses embedded within them. The example he likes to use is the drug approval process.

“The job of the regulatory agency is to decide which drugs go to market,” Jordan says. “And it's partially a statistical problem: You have a drug candidate, and it may or may not be effective on humans. You don't know a priori. So you do an A/B test. You bring in people, and you either give them the treatment, or you give them a control, and you see if there has been an improvement.

“The problem is that there are more players in this game. The drug candidates are not coming just from nature or from the agency itself. There are these third-party agents, which are the pharmaceutical companies, that are generating drug candidates. They can generate tens of thousands of them, which would be far too expensive to test.

“The agency has no idea whether a candidate is good or bad before they run their clinical trial. But the pharmaceutical company knows a little more. They know how they develop the candidates, and maybe they did some internal testing. So there you have your asymmetry. The agency can’t just ask the pharmaceutical company, Hey, is that candidate good or not? Because the pharmaceutical company is just hoping that it passes the screening and gets onto the market and they make some money.

Related content
Michael I. Jordan, Amazon Scholar and professor at the University of California, Berkeley, writes about the classical goals in human-imitative AI, and reflects on how in the current hubbub over the AI revolution it is easy to forget that these goals haven’t yet been achieved.

“The solution is something we call statistical contract theory, and hopefully, it will begin to emerge as a new field. The mathematical ingredients are again menus of options, including license fees, durations of licenses, sizes of the trials, and so on. And every drug company gets to look at that same menu for every possible drug. They make a selection, and then nature reveals an outcome via a clinical trial.

“In the selection process, the drug company is revealing something. The drug company says, hey, on this candidate drug, I know it's really good, so I'm going to take ‘business class’. And now you kind of revealed something to the agency. But the agency doesn't use that information directly; they set up a contract a priori, and you made your selection. We have a new mathematical theory that exactly addresses that kind of design problem and, hopefully, a range of other problems.”

Prediction-powered inference

Another tool that Jordan’s group has been developing is called prediction-powered inference.

“How do I use neural nets not just to make good predictions but to make good confidence intervals?” Jordan says. “The problem is that even if these predictions are very accurate, they still make big errors in some instances, and those can conspire to yield biased confidence intervals. We have this new technique called prediction-powered inference that addresses this problem.

“Classical bias correction would be just that I estimate the bias, and I correct the original estimate for the bias to get a more unbiased estimator. What we're doing is different. We're estimating not the bias but a confidence interval on all the possible biases. And then we're using that confidence interval to do all possible adjustments of the original value to get a confidence interval on the true parameter. So we don't just get a better predictive estimate; we get a whole confidence interval that has a high probability of covering the truth. It is able to use all of these biased predictions from the neural net and nonetheless provide an interval that has a guarantee of covering the truth. It's kind of almost magical that it can be done. But it can.”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.
US, VA, Arlington
he WWGST (Worldwide Grocery Stores Tech) teams are seeking a highly motivated Senior Research Scientist (Level 6) to join our team that is focused on building new technologies for grocery stores. We are a team of applied scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping such as Dash Cart or Self-CheckOut. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011 Key job responsibilities As a Senior Research Scientist, you will help solve a variety of technical challenges and mentor other junior scientists. You will be leader of the science team to resolve the hard problems. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.